Бизнес. Отчетность. Документация. Право. Производство
  • Главная
  • Бизнес-будни
  • Реакторы фишера тропша. Производство на основе синтез-газа синтетических моторных топлив по методу фишера-тропша

Реакторы фишера тропша. Производство на основе синтез-газа синтетических моторных топлив по методу фишера-тропша

РЕФЕРАТ

Процесс Фишера-Тропша


Введение

углеводород катализатор технологический

История знает немало примеров, когда в силу острой необходимости рождались новые оригинальные подходы к решению давно существующих жизненно важных проблем. Так, в предвоенной Германии, лишенной доступа к нефтяным источникам, назревал жесткий дефицит топлива, необходимого для функционирования мощной военной техники. Располагая значительными запасами ископаемого угля, Германия была вынуждена искать пути его превращения в жидкое топливо. Эта проблема была успешно решена усилиями превосходных химиков, из которых, прежде всего, следует упомянуть Франца Фишера, директора Института кайзера Вильгельма по изучению угля.

В 1926 году была опубликована работа Франца Фишера и Ганса Тропша «О прямом синтезе нефтяных углеводородов при обыкновенном давлении» . В ней сообщалось, что при восстановлении водородом монооксида углерода при атмосферном давлении в присутствии различных катализаторов (железо-оксид цинка или кобальт-оксид хрома) при 270ºС получаются жидкие и даже твердые гомологи метана.

Так возник знаменитый синтез углеводородов из монооксида углерода и водорода, называемый с тех пор синтезом Фишера-Тропша (ФТ). Смесь CO и H2 в различных соотношениях, называемая синтез-газом, может быть получена как из угля, так и из любого другого углеродсодержащего сырья. После изобретения процесса германскими исследователями было сделано множество усовершенствований и исправлений и название «Фишер-Тропш» сейчас применяется к большому количеству сходных процессов.

Справедливости ради следует отметить, что синтез Фишера-Тропша возник не на пустом месте - к тому времени существовали научные предпосылки, которые базировались на достижениях органической химии и гетерогенного катализа. Еще в 1902 году П. Сабатье и Ж. Сандеран впервые получили метан из СО и H2. В 1908 году Е. Орлов открыл, что при пропускании монооксида углерода и водорода над катализатором, состоящим из никеля и палладия, нанесенных на уголь, образуется этилен .

Первый промышленный реактор был пущен в Германии в 1935 году, использовался Co-Th осажденный катализатор. В 1930-40-е годы на основе технологии Фишера-Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40÷55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75÷100 и твердого парафина. Сырьем для процесса служил уголь, из которого газификацией получали синтез-газ, а из него углеводороды. Промышленность искусственного жидкого топлива достигла наибольшего подъема в годы второй мировой войны. К 1945 г. в мире имелось 15 заводов синтеза Фишера-Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн. т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла. В Германии синтетическое топливо почти полностью покрывало потребности немецкой армии в авиационном бензине. Годовое производство синтетического топлива в этой стране достигло более 124 000 баррелей в день, т.е. около 6,5 миллионов тонн в 1944 году .

После 1945 года в связи с бурным развитием нефтедобычи и падением цен на нефть отпала необходимость синтеза жидких топлив из СО и Н2. Наступил нефтехимический бум. Однако в 1973 году разразился нефтяной кризис - нефтедобывающие страны ОПЕК (Organization of Petroleum Exporting Countries, Организация стран-экспортеров нефти) резко повысили цены на сырую нефть, и мировое сообщество вынуждено было осознать реальную угрозу истощения в обозримые сроки дешевых и доступных нефтяных ресурсов. Энергетический шок 70-х годов возродил интерес ученых и промышленников к использованию альтернативного нефти сырья, и здесь первое место, бесспорно, принадлежит углю. Мировые запасы угля огромны, они, по различным оценкам, более чем в 50 раз превосходят нефтяные ресурсы, и их может хватить на сотни лет .

Кроме этого, в мире имеется значительное количество источников углеводородных газов (как непосредственно залежи природного газа, так и попутный нефтяной газ), которые по тем или иным причинам не используются по экономическим причинам (значительная удаленность от потребителей и, как следствие, большие затраты на транспортировку в газообразном состоянии). Однако мировые запасы углеводородов иссякают, потребности в энергии растут, и в этих условиях расточительное использование углеводородов недопустимо, о чем свидетельствует неуклонный рост мировых цен на нефть с начала 21 века.

В этих условиях синтез Фишера-Тропша снова приобретает актуальность.


1. Химизм процесса


.1 Основные реакции образования углеводородов


Суммарные реакции синтеза углеводородов из оксидов углерода и водорода в зависимости от катализатора и условий процесса можно представить разными уравнениями, но все они сводятся к двум основным . Первая основная реакция - собственно синтез Фишера-Тропша:



Вторая основная реакция - равновесие водяного газа. Этот процесс особенно легко протекает на железных катализаторах как вторичный:



С учетом этой вторичной реакции для ФТ-синтеза на железных катализаторах получается суммарное уравнение:



Реакции (1) и (3) при стехиометрическом, исчерпывающем превращении позволяют получить максимальный выход 208,5 г углеводородов на 1 м3 смеси CO + Н2 при образовании только олефинов.

Реакция (2) может подавляться при низких температурах, малом времени контакта, циркуляции синтез-газа и удалении воды из циркулирующего газа, так что синтез может протекать частично по уравнению (1) с образованием воды и частично по уравнению (3) с образованием СO2.

Из уравнения (1) при удвоенном превращении по уравнению (2) получается суммарное уравнение синтеза углеводородов из СО и Н2O по Кёльбелу-Энгельгардту:



Стехиометрический выход равен 208,5 г [-СН2-] на 1 м3 смеси СО + Н2.

Образование углеводородов из СО2 и Н2 обусловлено уравнением (1) и реакцией, обратной (2):



Стехиометрический выход 156,25 г. [-СН2-] на 1 м3 смеси СO2 + Н2.

В общем виде уравнения выглядят следующим образом:

Для синтеза парафинов



Для синтеза олефинов


(10)

(11)

(12)

(13)


1.2 Побочные реакции


Метан образуется в присутствии кобальтовых и никелевых катализаторов:


(14)


4 на 1 м3 смеси СО + Н2. Вода, образующаяся при этом, конвертируется затем (особенно на железных катализаторах) в присутствии СО в смесь СО2 + Н2, поэтому суммарная реакция образования метана иная:


(15)


Стехиометрический выход 178,6 г СН4 на 1 м3 смеси СО + Н2. При температурах выше 300°С метан образуется также при гидрировании СО2 по суммарному уравнению:


(16)


Стехиометрический выход 142,9 г СН4 на 1 м3 смеси СO2 + H2. Процесс синтеза осложняется образованием углерода по реакции Будуара:


(17)


ФТ-синтез может быть направлен в сторону преимущественного образования спиртов или альдегидов, которые при синтезе углеводородов образуются как побочные продукты. Основные уравнения в случае спиртов следующие


(18)

(19)

(20)


а альдегиды образуются так:


(21)

(22)


Уравнения для других продуктов, образующихся в небольшом количестве (кетоны, карбоновые кислоты, эфиры), опущены.


.3 Механизм реакций


Гидрирование оксида углерода в процессе ФТ представляет собой комплекс сложных, параллельных и последовательных реакций. Первая стадия - одновременная хемосорбция оксида углерода и водорода на катализаторе. Оксид углерода в этом случае соединяется углеродным атомом с металлом, вследствие чего ослабляется связь С-О и облегчается взаимодействие СО и водорода с образованием первичного комплекса. С этого комплекса и начинается рост углеводородной цепи («начало цепи»). В результате дальнейшего ступенчатого присоединения поверхностного соединения, несущего один углеродный атом, углеродная цепочка удлиняется («рост цепи»). Рост цепи заканчивается в результате десорбции, гидрирования или взаимодействия растущей цепочки с продуктами синтеза («обрыв цепи»).

Основные продукты этих реакций - насыщенные и ненасыщенные углеводороды алифатического ряда, а побочные продукты - спирты, альдегиды и кетоны. Реакционноспособные соединения (ненасыщенные углеводороды, альдегиды, спирты и др.) могут при последующих реакциях встраиваться в растущие цепи или образовывать поверхностный комплекс, дающий начало цепи. В дальнейшем реакции между образующимися продуктами приводят к кислотам, эфирам и т.д. Реакции дегидроциклизации, протекающие при более высоких температурах синтеза, приводят к ароматическим углеводородам. Не следует исключать также протекание крекинга или гидрокрекинга более высококипящих углеводородов, первично образовавшихся и десорбированных с катализатора, если они снова адсорбируются на нем.

Механизм реакции, несмотря на десятилетия его изучения, в деталях остается неясен . Впрочем, эта ситуация типична для гетерогенного катализа. Наиболее признанным является механизм с ростом на конце цепи . Молекулы или атомы, переходящие в возбужденное состояние при одновременной хемосорбции оксида углерода и водорода на катализаторе, реагируют с образованием енольного первичного комплекса (схема А1), который также дает начало цепи. Рост цепи (схема А2) начинается с отщепления молекулы Н2O от двух первичных комплексов (с образованием С-С-связи) и отрыва атома С от атома металла в результате гидрирования. Образовавшийся комплекс С2, присоединяя один первичный комплекс, выделяет молекулу Н2O и в результате гидрирования освобождается от металла. Так, путем конденсации и гидрирования происходит ступенчатый рост цепи на каждый последующий С-атом. Начало цепи можно изобразить так:


Схема А1


Рост цепи у крайних С-атомов идет так:


Другая возможность состоит в том, что первоначально связь Me-С в первичном адсорбционном комплексе частично гидрируется, а затем образовавшееся соединение конденсируется с первичным комплексом, что ведет к наращиванию цепи по схеме (А3) или по схеме (А4) и в результате образуется вторичный метилразветвленный адсорбционный комплекс:


Схема А3


Схема А4


Десорбция первичного адсорбционного комплекса, всегда содержащего гидроксигруппу, приводит к альдегидам, а при последующих реакциях - к спиртам, кислотам и эфирам:

Углеводороды могут образоваться в результате дегидратации или расщепления адсорбционных комплексов:


Схема А5


Начало цепи могут также дать спирты и альдегиды после их адсорбции на катализаторе в фенольной форме

или олефины, которые, вероятно, после взаимодействия с водой связаны в енольной форме на катализаторе.

В качестве еще одной возможности роста цепи рассматривается полимеризация СН2-групп. При гидрировании первичного комплекса образуются НО-СН2- и СН2-поверхностные комплексы:



Гидрированный поверхностный комплекс взаимодействует с аналогичным комплексом с отщеплением воды (Б1):


Схема Б1

Точно так же образовавшиеся поверхностные комплексы могут взаимодействовать с первичным, негидрированным комплексом (с образованием С2-аддитивного комплекса по схеме Б2) или реагировать с комплексом после его гидрирования (по схеме Б1):


Схема Б2

Цепь может расти и путем полимеризации первично образовавшихся СН2-групп по схеме В (с изменением заряда на Me):


Вклад полимеризации в процесс роста цепи зависит от соотношения скоростей конденсации и полимеризации.


2. Катализаторы


ФТ-синтез начинается с одновременной хемосорбции СО и Н2 на атомах металла. Для образования такой хемосорбционной связи особенно пригодны переходные металлы с 3d- и 4f-электронами или их соединения внедрения (карбиды, нитриды и т.д.). Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, например, силикагель и глинозем. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан, при повышении же давления никель образует летучий карбонил и вымывается из реактора .

Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы). Типичными для их работы являются давление 1÷50 атм и температура 180÷250°С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ.

Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР. По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200÷360°С), и позволяют получать более широкий спектр продуктов: парафины, низшие ?-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО: Н2 ниже стехиометрического 1: 2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается. Кобальтовые контакты способны работать без регенерации значительно дольше. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа .

И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м3 . Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизельное топливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.

При воздействии различных агентов на свежеприготовленные катализаторы группы железа изменяется состав и структура катализаторов, появляются фазы, действительно активные в ФТ-синтезе. В то время как число таких фаз в случае кобальта и никеля относительно небольшое, для железа их много, поэтому каталитическая система усложняется. Железо образует с углеродом или другими металлоидами (азот, бор и т.д.) соединения внедрения различного состава, не утрачивая при этом «металлического» характера, необходимого для ФТ-сннтеза.

Многие исследования подтвердили, что железные катализаторы в ходе ФТ-синтеза изменяются по фазовому составу, степени окисления и углеродным структурам внедрения. Железо восстановленного катализатора к началу синтеза переходит в карбид Fe2C (карбид Хэгга). Одновременно, но медленнее, образуется оксид Fe3O4, доля которого (в расчете на исходное железо) постоянно повышается, в то время как содержание карбида Fe2C в зависимости от времени работы и температуры меняется мало. Содержание свободного углерода возрастает с увеличением времени синтеза. В условиях эксплуатации фазовый состав катализатора находится в равновесии с составом реакционной смеси и только в малой степени зависит от способа его приготовления или предварительной обработки (восстановление, карбидирование) .

В работе Бартоломью показано, что на Co- и Ni - катализаторах СО гидрируется в метан по двум маршрутам, каждый из которых связан с определенными участками на поверхности . А.Л. Лапидус с сотрудниками выдвинули двухцентровую модель Co-катализатора синтеза ФТ. Согласно этим представлениям, центрами первого типа являются кристаллиты металлического Со. На них СО адсорбируется диссоциативно и затем гидрируется в метан. На этих же центрах происходит реакция диспропорционирования CO, приводящая к зауглероживанию катализатора. Центры второго типа представляют собой границу между металлическим Со и оксидной фазой на поверхности катализатора. Они ответственны за рост углеводородной цепи. Оксид углерода адсорбируется на СоO в слабосвязанной ассоциативной форме, затем перемещается на носитель, где образует с водородом поверхностные комплексы типа CHxO. Эти комплексы взаимодействуют друг с другом, образуя полимерные структуры на поверхности. Их гидрирование на СоO дает углеводороды.

Два типа адсорбции СО на поверхности обнаруживаются по спектру термопрограммированной десорбции (ТПД) СО, в котором центрам первого типа отвечает пик с Tmax в области 250-350°С, центрам второго - Tmax < 250°C. По соотношению площадей пиков можно судить о доле каждого из типов центров и, соответственно, предсказывать каталитическое действие контакта.

Эксперименты показали хорошую корреляцию между выходом углеводородов и количеством центров слабосвязанной адсорбции СО на поверхности контакта .

Оксидная фаза Со-катализаторов обычно формируется в процессе их предварительной термообработки (прокаливания и / или восстановления) вследствие взаимодействия оксидного носителя (SiO2, Al2O3 и др.), оксида кобальта и промотора. Катализаторы, не содержащие оксидной фазы, не способны катализировать образование жидких углеводородов из СО и Н2, поскольку не имеют на своей поверхности центров полимеризации.

Таким образом, оксидная фаза катализаторов синтеза ФТ играет определяющую роль в образовании жидких углеводородов, и для создания эффективных катализаторов этого процесса необходимо особое внимание уделять подбору носителя и проведению предварительной термообработки катализатора. Воздействуя на активную часть катализатора путем предварительной термообработки, приводящей к усилению взаимодействия активной фазы с носителем, или вводя в состав катализатора модифицирующие оксидные добавки, можно усилить полимеризационные свойства катализатора и, следовательно, увеличить селективность реакции в отношении образования жидких углеводородов.

Промоторы по принципу действия подразделяются на две группы - структурные и энергетические.

В качестве структурных промоторов используются трудно восстанавливаемые оксиды тяжелых металлов, например Аl2О3, ThO2, MgO и СаО. Они способствуют образованию развитой поверхности катализатора и препятствуют рекристаллизации каталитически активной фазы. Подобную функцию выполняют и носители - кизельгур, доломит, диоксид кремния (в форме свежеосажденного геля гидроксида или силиката калия).

Энергетические промоторы, которые также называют химическими, электронными или активирующими добавками, согласно электронному механизму реакции, увеличивают ее скорость и влияют на селективность. В качестве энергетических промоторов могут действовать также химически активные структурные промоторы. Энергетические промоторы (особенно щелочи) значительно влияют и на текстуру катализатора (поверхность, распределение пор).

В качестве энергетических промоторов для железных катализаторов (независимо от способа получения) чаще всего используют карбонаты щелочных металлов. Железным катализаторам, получаемым разными способами, соответствует неодинаковая оптимальная концентрация щелочной добавки. Осажденные катализаторы не должны содержать более 1% К2СО3 (в расчете на Fe); для определенных осажденных катализаторов оптимум составляет 0,2% К2СО3 (отклонение в 0,1% заметно влияет на активность и селективность). Для плавленых катализаторов указана оптимальная концентрация? 0,5% К2О.

К промоторам, обусловливающим и структурное, и энергетическое влияние, можно отнести медь. Медь облегчает восстановление железа, причем этот процесс в зависимости от количества меди может протекать при температуре, более низкой (вплоть до 150°С), чем без добавки. Далее эта добавка при сушке гидроксида железа (II и III) способствует окислению его до Fe2O3. Медь благоприятствует образованию соединений железа с углеродом и вместе со щелочью ускоряет восстановление железа, образование карбида и углерода. На селективность ФТ-синтеза медь не влияет .


3. Факторы, влияющие на процесс


.1 Качество сырья


Выход и состав продуктов ФТ-синтеза в значительной степени зависит от соотношения СО: Н2 в исходном синтез-газе. Это соотношение в свою очередь существенно зависит от применяемого способа получения синтез-газа. В настоящее время существуют три основных промышленных метода получения последнего.

Газификация угля. Процесс основан на взаимодействии угля с водяным паром:

Эта реакция является эндотермической, равновесие сдвигается вправо при температурах 900÷1000ºС. Разработаны технологические процессы, использующие парокислородное дутье, при котором наряду с упомянутой реакцией протекает экзотермическая реакция сгорания угля, обеспечивающая нужный тепловой баланс:

Конверсия метана. Реакция взаимодействия метана с водяным паром проводится в присутствии никелевых катализаторов (Ni/Al2O3) при повышенных температурах (800÷900ºС) и давлении:

В качестве сырья вместо метана может быть использовано любое углеводородное сырье.

Парциальное окисление углеводородов. Процесс заключается в неполном термическом окислении углеводородов при температурах выше 1300ºС:

Способ также применим к любому углеводородному сырью.

При газификации угля и парциальном окислении соотношение СО: Н2 близко к 1: 1, тогда как при конверсии метана оно составляет 1: 3 .

В целом, можно отметить следующие закономерности :

в случае исходной смеси, обогащенной водородом, получаются предпочтительно парафины, причем термодинамическая вероятность их образования уменьшается в ряду метан > низкомолекулярные н-алканы > высокомолекулярные н-алканы;

синтез-газ с высоким содержанием оксида углерода ведет к образованию олефинов и альдегидов, а также способствует отложению углерода. Вероятность образования алкенов уменьшается в ряду высокомолекулярные н-олефины > низкомолекулярные н-олефины.


.2 Температура


ФТ-синтез - сильно экзотермическая реакция. Образующееся тепло составляет до 25% от теплоты сгорания синтез-газа. Скорость синтеза и одновременно выход продукта с единицы объема катализатора за единицу времени повышаются с увеличением температуры. Однако скорость побочных реакций при этом также возрастает. Поэтому верхняя температура ФТ-синтеза ограничена в первую очередь нежелательным метано- и коксообразованием . Особенно сильное увеличение выхода метана при повышении температуры наблюдается для Co катализаторов.

Как правило, процесс проводится при температуре 190÷240°C (низкотемпературный вариант, для Co и Fe катализаторов) или 300÷350°C (высокотемпературный вариант, для Fe катализаторов) .


.3 Давление


Так же, как при повышении температуры, с ростом давления растет и скорость реакций. Кроме этого, повышение давления в системе способствует образованию более тяжелых продуктов. Типичными значениями давлений для промышленных процессов являются 0,1÷5 МПа. Так как повышенное давление позволяет увеличить производительность синтеза, для экономической эффективности процесс проводят при давлении 1,2÷4 МПа.

Совместное влияние температуры и давления, а также природы катализатора на выход различных продуктов удовлетворяет распределению Андерсона-Шульца-Флори (ASF), описываемому формулой

где Pn - массовая доля углеводорода с углеродным номером n;

K1/(k1+k2), k1, k2 - константы скорости роста и обрыва цепи соответственно.

Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина ? снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину ?. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции .

Графически распределение ASF представлено на рисунке 1.

.4 Объемная скорость


Повышение объемной скорости (или уменьшение времени контакта) газа не благоприятствует реакциям, протекающим с более низкой скоростью. К ним принадлежат реакции, идущие на поверхности катализатора, - отщепление кислорода, гидрирование олефинов и рост углеродной цепи. Поэтому с уменьшением среднего времени контакта в продуктах синтеза повышается количество спиртов, олефинов и соединений с короткой цепью (газообразные углеводороды и углеводороды из интервала выкипания бензиновой фракции) .


4. Разновидности технологических схем


Главной технической проблемой синтеза Фишера-Тропша является необходимость съема большого количества теплоты, выделяющейся в результате сильно экзотермических химических реакций. Конструкция реактора во многом определяется также видом продуктов, для получения которых он предназначен. Существуют несколько разновидностей конструкции реакторов для ФТ-синтеза, которые определяют ту или иную технологическую схему процесса.


.1 Схема с многотрубным реактором и стационарным слоем катализатора


В таких реакторах протекает низкотемпературный процесс в газовой фазе. Конструкция многотрубного реактора представлена на рисунке 2.

Многотрубные реакторы просты в эксплуатации, не создают проблем с отделением катализатора, могут использоваться для получения продуктов любого состава. Однако они имеют целый ряд недостатков: сложность в изготовлении, большая металлоемкость, сложность процедуры перегрузки катализатора, значительный перепад давления по длине, диффузные ограничения на крупных зернах катализатора, сравнительно невысокий теплоотвод .

Одна из возможных технологических схем высокопроизводительного ФТ-синтеза в многотрубном реакторе представлена на рисунке 3.

Технологические параметры представлены в таблице 1, состав получаемых продуктов - в таблице 2.


Таблица 1 - Условия работы промышленных установок газофазного синтеза Фишера-Тропша на стационарном слое катализатора

ПараметрЗначениеДавление, МПа2,3÷2,5Температура,°С220÷250Соотношение Н2: СО в исходном газе1,3: 2Соотношение циркуляционного и исходного газа2,5Число ступеней1÷2Состав катализатора, масс. ч.Fe (100)Сu (5)К2O (5)SiO2 (25)Продолжительность работы катализатора, мес.9÷12

Таблица 2 - Типичный состав углеводородов, получаемых в промышленных синтезах Фишера-Тропша на стационарном слое катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс. углеводороды: С127 С345 фракции 30-165°С8,5 165-230°С5 230-320°С7,6 320-460°С23 >460°С18 кислородсодержащие соединения4Степень превращения смеси СО + Н2, %73Выход углеводородов С2+, г на 1 м3 смеси СО + Н2140

.2 Схема с псевдоожиженным слоем катализатора


Реакторы с кипящим слоем обеспечивают хороший теплоотвод и изотермическое протекание процесса. Диффузные ограничения в них минимальны за счет высокой линейной скорости газа и использования мелкодисперсного катализатора. Однако такие реакторы сложно вывести на рабочий режим. Проблемой является отделение катализатора от продуктов. Отдельные узлы подвергаются сильной эрозии. Принципиальным ограничением реакторов с кипящим слоем является невозможность получения в них тяжелых парафинов . На рисунке 4 представлена технологическая схема ФТ-синтеза в реакторе с псевдоожиженным слоем катализатора.


Рисунок 4. Схема процесса Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора:

3 - подогреватели; 2 - генератор синтез-газа; 4 - теплообменники; 5 - промывная колонна; 6 - реактор; 7 - циклон; 8 - сепаратор.


Технологические параметры процесса при работе по рассматриваемой схеме представлены в таблице 3, состав получаемых продуктов - в таблице 4.


Таблица 3 - Условия работы промышленной установки синтеза Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора

ПараметрЗначениеДавление, МПа2,8Температура,°С315Соотношение Н2: СО в исходном газе3: 1Соотношение циркуляционного и исходного газа1,5

Таблица 4 - Типичный состав углеводородов, получаемых в реакторе с псевдоожиженным слоем катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс. С29 С3429 фракции 30-200°С40 200-320°С9 >320°С3 кислородсодержащие соединения10Степень превращения СО, %95÷98Выход углеводородов С2+, г на 1 м3 смеси СО + Н2160

.3 Схема с циркулирующим взвешенным порошкообразным катализатором


Данная схема также относится к высокотемпературному процессу Ф-Т. Технологическая схема процесса Фишера-Тропша в потоке взвешенного порошкообразного катализатора приведена на рисунке 5.


Рисунок 5. Схема ФТ-синтеза в потоке взвешенного порошкообразного катализатора:

Печь; 2 - реактор; 3 - холодильники; 4 - колонна-сепаратор для промывки маслом; 5 - конденсатор; 6 - разделительная колонна; 7 - колонна для промывки получаемого бензина; 8 - колонна для промывки газа.


Технологические параметры синтеза в случае проведения процесса в потоке взвешенного порошкообразного катализатора представлены в таблице 5, состав получаемых продуктов - в таблице 6.


Таблица 5 - Условия работы промышленных установок синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

ПараметрЗначениеДавление, МПа2,0÷2,3Температура,°С300÷340Соотношение Н2: СО в исходном газе в суммарном газе (2,4÷2,8): 1 (5÷6): 1Соотношение циркуляционного и исходного газа2,0÷2,4Продолжительность работы катализатора, сут.?40

Таблица 6 - Типичный состав углеводородов, получаемых на установке синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс.метан этилен этан пропилен пропан бутилены бутаны С512 С1318 С1921 С2230 С31+ кислородсодержащие соединения10 4 6 12 2 8 1 39 5 1 3 2 7Степень превращения смеси СО + Н2, %77÷85


4.4 Схема с барботажным (slurry) реактором

Реактор барботажного типа, который также называют пузырьковым (slurry), считается наиболее эффективным для синтеза ФТ. В этом аппарате синтез-газ проходит снизу вверх через слой высококипящего растворителя, в котором суспензирован мелкодисперсный катализатор. Подобно реакторам с кипящим слоем, в пузырьковом реакторе обеспечиваются эффективный массообмен и теплоотвод. В то же время в нем возможно получение тяжелых продуктов, как в трубчатом аппарате . На рисунке 6 представлена схема работы такого реактора.

Технологическая схема с применением барботажного реактора представлена на рисунке 7.


Рисунок 7. Схема ФТ-синтеза в барботажном реакторе:

Компрессор; 2 - расходомеры;.3 - диафрагмы; 4 - пробоотборники; 5 - реактор: 6 - паросборник; 7 - теплообменник; 8 - продуктовые емкости; 9 - разделительные емкости; 10 - насосы; 11 - холодильник; 12 - установка для выделения СО2; 13 - фильтр; 14 - аппарат для приготовления катализаторной суспензии; 15 - центрифуга; 16 - емкость для масла.


На примере данной схемы можно отметить большую технологическую гибкость синтеза ФТ, когда варьируя качеством сырья и технологическими показателями можно получать продукт требуемого фракционного состава (таблица 7).


Таблица 7 - Состав продуктов при различных режимах ведения ФТ-синтеза в барботажном реакторе

ПоказателиПолучение разных продуктовс низкой мол. массойсо средней мол. массойс высокой мол. массойВыход суммарного продукта С3+, г на 1 м3 смеси СО+Н2162172182Содержание в суммарном продукте С3+, % С3429,66,92,2 С5-190°С63,040,07,1 190-320°С6,225,78,3 320-450°С1,218,333,0 > 450°С-9,149,4

Значения технологических параметров для рассматриваемой схемы приведены в таблице 8.


Таблица 8 - Условия работы промышленных установок синтеза Фишера-Тропша с барботажным реактором

ПараметрЗначениеДавление, МПа1,0÷1,2Температура,°С210÷280Соотношение Н2: СО в исходном газе1: (1,3÷1,5)Объемная скорость, ч-1110÷190Степень превращения СО смеси СО + Н2, %89÷92 87÷90Выход углеводородов С1+, г на 1 м3 смеси СО + Н2176÷178

Для получения низкомолекулярных углеводородов применяются более высокие температура и объемная скорость, но пониженное давление. Если же требуются высокомолекулярные парафины, то указанные параметры соответственно меняют .


5. Современные производства


Сравнительно невысокие мировые цены на нефть, незначительно колеблющиеся около $20 (в пересчете на стоимость доллара США 2008 года) после второй мировой войны до 70-х годов 20 века , долгое время делали строительство крупных производств, основанных на синтезе Фишера-Тропша, нерентабельными. Многотоннажные производства синтетических углеводородов из синтез-газа существовали и развивались лишь в ЮАР, однако и это было обусловлено не экономической выгодой, а политической и экономической изоляцией страны при режиме апартеида. И в настоящее время заводы компании Sasol (South African Coal, Oil and Gas Corporation) остаются одними из самых производительных в мире .

В современных условиях предприятия, использующие процесс ФТ, способны рентабельно работать при цене на нефть более $40 за баррель. В случае, если по технологической схеме предусматривается улавливание и хранение либо утилизация углекислого газа, образующегося при синтезе, эта цифра возрастает до $50÷55 . Так как мировые цены на нефть не опускались ниже этих отметок с 2003 года , строительство крупных предприятий по производству синтетических углеводородов из синтез-газа не заставило себя ждать. Примечательно, что большинство проектов осуществляется в Катаре, богатым природным газом.

Ниже описаны крупнейшие действующие и строящиеся предприятия GTL (Gas to liquid, «газ в жидкость»), основанные на синтезе ФТ.


.1 Sasol 1, 2, 3. PetroSA


Южноафриканской компанией Sasol накоплен огромный опыт в промышленном применении синтеза ФТ. Первый пилотный завод Sasol 1 был пущен в 1955 году, сырьем для которого служит синтез-газ, получаемый методом газификации угля. Ввиду действия торговых эмбарго в отношении ЮАР в 50-х - 80-х годах 20 века, для обеспечения страны энергоносителями в 1980 и 1984 годах были введены в строй два более крупных производства - Sasol 2 и Sasol 3 .

Помимо этого компания Sasol является лицензиаром процесса GTL для южноафриканской государственной нефтяной компании PetroSA. Ее предприятие, также известное как Mossgas, работает с 1992 года. Сырьем является природный газ, добываемый в открытом море .

На протяжении многолетней эксплуатации производств Sasol инженеры компании стремились улучшить технологию синтеза, в работе были опробованы все четыре типа реакторов, описанных в разделе 4, начиная с многотрубных реакторов, работающих при атмосферном, а позже при повышенном давлении, и заканчивая барботажными реакторами.

Предприятия Sasol поставляют на рынок как моторные топлива, так и сырье для нефтехимии (олефины, спирты, альдегиды, кетоны и кислоты, а также фенол, крезолы, аммиак и серу) .



Данное предприятие введено в эксплуатацию в 2007 году в Катаре. Лицензиаром выступили совместно компании Sasol и Chevron, сформировав международное совместное предприятие Sasol Chevron Limited.

Исходный природный газ подвергается паровому риформингу, после чего полученный синтез-газ подается в барботажный реактор, где проходит низкотемпературный ФТ-синтез. Продукты синтеза подвергаются гидроочистке и гидрокрекингу.

Товарными продуктами являются экологически чистое дизельное топливо (менее 5 ppm серы, менее 1% ароматических углеводородов, цетановое число около 70), а также нафта, используемая как сырье для пиролиза .


5.3 SMDS


Компания Shell в 1993 году ввела в эксплуатацию свой завод Shell MDS (Middle Distillate Synthesis, синтез средних дистиллятов) в Малайзии. В основе процесса лежит современная модификация процесса ФТ. Синтез-газ для проведения реакции ФТ получают парциальным окислением природного газа. Процесс осуществляется в многотрубных реакторах, заполненных высокопроизводительным катализатором. Продукты синтеза (преимущественно высокомолекулярные алканы) подвергаются гидрокрекингу и гидроизомеризации.

Производство направлено на получение высококачественных синтетических дизельного топлива и керосина, а также парафинов .


.4 Pearl


Предприятие Pearl включает в себя крупнейшее в мире производство GTL, созданное компанией Shell совместно с Qatar Petroleum. Первая очередь комплекса пущена в мае 2011 года, выход на полную мощность запланирован на 2012 год . Технологический процесс, в общем, является развитием технологий, используемых на заводе SMDS. Цепочка процессов идентична: природный газ, добытый на шельфовых месторождениях, подвергается частичному окислению с получением смеси Н2 и СО; затем синтез-газ претерпевает превращения в многотрубных реакторах (24 аппарата) в парафины с длинной цепью. Последние в результате гидрокрекинга и разделения дают товарные продукты: моторные топлива, нафту (сырье для нефтехимии), а также в роли побочных продуктов базовые смазочные масла и парафины .


5.5 Escravos


Данный GTL-проект, осуществляемый в Нигерии, изначально разрабатывался совместно Sasol и Chevron Corporation, как и Oryx. Однако из-за существенно возросших затрат на осуществление проекта Sasol покинул его. В настоящий момент предприятие строится с участием Chevron Nigeria Limited и Nigerian National Petroleum Company. Ввод в эксплуатацию завода запланирован на 2013 год. Исходным сырьем является природный газ. Собственно ФТ-синтез будет осуществляться в барботажных реакторах. Отличительной чертой технологической схемы является использование фирменного процесса ISOCRACKING компании Chevron, благодаря которому крекируются до легких и средних дистиллятов и облагораживаются синтетические парафины - продукты ФТ-синтеза.

Товарной продукцией являются моторные топлива (в первую очередь дизельное), нафта, а также кислородосодержащие продукты - метанол и диметиловый эфир .

В таблицу 9 сведена общая информация об описанных выше производствах синтетических углеводородов .


Таблица 9 - Современные мощности GTL в мире

КомпанияРазработчик технологииМесто расположенияМощность, баррелей / суткиSasol 1SasolСасолбург, ЮАР5600Sasol 2, 3SasolСекунда, ЮАР124000Petro SA (бывший Mossgas)SasolМоссел Бей, ЮАР22500SMDSShellБинтулу, Малайзия14000EscravosSasol, ChevronЭскравос, Нигерия34000 (проект)OryxSasol, ChevronРас Лаффан, Катар33700PearlShellРас Лаффан, Катар70000


Кроме этого, перспективным является строительство заводов ФТ-синтеза в Алжире (до 33 тыс. баррелей в день) и Иране (до 120 тыс. баррелей в день).

Имеется информация о совместной разработке Sasol и норвежской Statoil установок, расположенных на морских платформах или даже плавучих заводов по переработке природного и попутного газа в жидкие углеводороды. Однако про осуществление этого проекта ничего не известно .

Разработан базовый проект и ведутся дальнейшие переговоры по строительству в Узбекистане завода GTL. На нем планируется перерабатывать метан, производимый Шуртанским газохимическим комплексом, по технологии компаний Sasol и Petronas .

Компании ExxonMobil, Syntroleum, ConocoPhillips занимаются исследованиями в области GTL-процессов, однако, эти фирмы пока имеют в своем распоряжении лишь пилотные установки, используемые для исследовательских целей .


Заключение


Синтез Фишера-Тропша позволяет получать из природных горючих ископаемых, используемых в настоящее время преимущественно как топливо для тепло- и электростанций (уголь, природный газ) или вовсе сжигаемых на факелах либо выбрасываемых в атмосферу (попутный нефтяной газ), высококачественные моторные топлива и ценное сырье для последующего химического синтеза. Преимущественно по первому пути идет развитие технологий компании Shell, процессы же фирмы Sasol сочетают оба направления. На рисунке 8 представлены возможные варианты переработки первичных продуктов ФТ-синтеза.


Качество получаемого в процессе ФТ по технологии Sasol Chevron дизельного топлива представлено в таблице 10 .


Таблица 10 - Характеристика синтетического ДТ

ХарактеристикаСинтетическое ДТТребования стандарта EN 590:2009Плотность при 15ºС, кг/м3780820÷845Температура выкипания 95% фракции, ºС355?360Кинематическая вязкость при 40ºС, мм2/с2,02,0÷4,5Температура вспышки, ºС>55>55Цетановое число>70>51Содержание серы, мг/кг<1?10Содержание полициклических ароматических углеводородов, % масс.<0,01?11Температура помутнения-23-Содержание насыщенных углеводородов, % об.>99-

Удачный либо неудачный опыт эксплуатации современных GTL-производств, в первую очередь Pearl - самого современно и крупного GTL-предприятия - вероятно определит будущее развитие технологии и заводов, использующих процесс ФТ. У GTL-технологии, помимо нестабильных цен на нефть, есть другие существенные проблемы.

Первая из них - очень высокая капиталоемкость. По расчетам, вложение в завод производительностью 80 тыс. баррелей синтетических углеводородов в день, исходным сырьем для которого является уголь, составляют от $7 млрд. до $9 млрд. Для сравнения: НПЗ такой же производительности обойдется в $2 млрд. Большая часть капитальных затрат (60÷70%) приходится на комплекс получения синтез-газа . Реальные цифры подтверждают расчеты: затраты на возводимый в Нигерии Escravos GTL с запланированных $1,7 млрд. поднялись до $5,9 млрд. Строительство Pearl GTL обошлось Shell в $18-19 млрд. Осуществление в Катаре грандиозного проекта по строительству GTL-завода мощностью 154 тыс. баррелей в сутки синтетических углеводородов было отклонено фирмой-разработчиком Exxon Mobil. В проект планировалось инвестировать $7 млрд., чего явно оказалось бы недостаточно. Однако компания объяснила отказ от проекта «перераспределением ресурсов» в пользу строительства газоперерабатывающего предприятия Barzan, также расположенного в Катаре .

Другой весомой проблемой является влияние на экологию. Как показано в разделе 1, в процессе ФТ образуется диоксид углерода, который является парниковым газом. Как считается, выбросы СО2 являются причиной глобальных климатических изменений, и количество выбрасываемого диоксида углерода ограничивается квотами на выбросы парниковых газов. В цепочке добыча-переработка-потребление для синтетических моторных топлив выбросы углекислого газа примерно вдвое превышают таковые для нефтяных топлив . Существуют различные технологии по утилизации углекислого газа (от хранения в подземных резервуарах до закачки в газо- или нефтеносный пласт), но они существенно удорожают и без того недешевые GTL-проекты. Однако стоит отметить, что другие вредные выбросы от непосредственно сгорания синтетических топлив в ДВС на 10÷50% ниже, чем для нефтяных топлив (таблица 11) .


Таблица 11 - Вредные выбросы при сгорании синтетического и традиционного ДТ

ВыбросыСинтетическое ДТ г/кВт·чНефтяное ДТ г/кВт·чУглеводороды (НС)0,210,25Монооксид углерода (CO)0,670,94Диоксид углерода (CO2)376308Оксиды азота (NOx)6,037,03Несгоревшие частицы (сажа)0,080,15

К экологической же проблеме можно отнести потребность в большом количестве воды для осуществления газификации угля, если последний используется в качестве исходного сырья. Зачастую климат в странах, богатых углем, но бедных нефтью, является засушливым. Однако на второй стадии GTL-производства - собственно синтез ФТ - вода является побочным продуктом, который после очистки можно использовать в технологическом процессе. Такая методика используется на заводе Pearl. Так как для получения синтез-газа на этом предприятии вода не нужна, она используется для выработки пара высокого давления при охлаждении реакторов ФТ. Получаемый водяной пар приводит компрессоры и электрогенераторы .

Рынок GTL является растущим рынком. Основными факторами, движущими этот рынок, являются настоятельная потребность в монетизации трудно утилизируемых другими способами (трубопроводным транспортом или сжижением) больших запасов природного, попутного нефтяного газа и газа угольных месторождений на фоне все возрастающей мировой потребности в жидких углеводородах и ужесточающихся требованиях к экологическим характеристикам углеводородного топлива. Освоение GTL-технологий является хорошей рыночной возможностью для тех стран и компаний, которые располагают большими запасами природного или попутного газа и угля. GTL-производства могут не конкурировать, а дополнять такие направления в отрасли, как LNG (Liquefied natural gas, сжиженный природный газ), производства экологически чистых топлив, высококачественных базовых масел.


Список использованных источников


1.Химические вещества из угля. Пер. с нем. /Под ред. И.В. Калечица - М.: Химия, 1980. - 616 с, ил.

2.Караханов Э.А. Синтез-газ как альтернатива нефти. II. Метанол и синтезы на его основе // Соросовский образовательный журнал. - 1997. - №12. - С. 68.

3.The Early Days of Coal Research [Электронный ресурс]. - Режим доступа: #"justify">4.Процесс Фишера - Тропша [Электронный ресурс]. - Режим доступа: #"justify">.Обзор катализаторов синтеза Фишера-Тропша [Электронный ресурс]. - Режим доступа: #"justify">6.Dry M.E. Applied Catalysis A: General. - 2004. - №276, - Р. 1.

7.11. Сторч Г., Голамбик Н., Голамбик Р. Синтез углеводородов из окиси углерода и водорода. - М.: И.Л., 1954. - С. 257.

8.Lee W.H., Bartolomew C.H.J. Catal. - 1989. - №120. - Р. 256.

.Wisam Al-Shalchi. Gas to liquids technology (GTL). - Baghdad - 2006.

10.Нефть [Электронный ресурс]. - Режим доступа: #"justify">11.Matthew Dalton. Big Coal Tries to Recruit Military to Kindle a Market. // The Wall Street Journal. - 2007. - Sept. 11.

.Explore Sasol - Sasol history [Электронный ресурс]. - Режим доступа: #"justify">.The PetroSA GTL Refinery & LTFT Technology Development [Электронный ресурс]. - Режим доступа: #"justify">.Oryx GTL [Электронный ресурс]. - Режим доступа: #"justify">.Shell MDS Technology and Process [Электронный ресурс]. - Режим доступа: #"justify">.Inside Shells Bintulu GTL Plant [Электронный ресурс]. - Режим доступа: #"justify">17.First cargo of Pearl GTL products ship from Qatar [Электронный ресурс]. - Режим доступа: #"justify">.Gas-to-liquids (GTL) processes [Электронный ресурс]. - Режим доступа: #"justify">19.Escravos Gas-to-Liquids Project, Niger Delta [Электронный ресурс]. - Режим доступа: #"justify">20.Обзор рынка GTL [Электронный ресурс]. - Режим доступа: #"justify">.Узбекистан развивает сотрудничество с компаниями «Сасол» и «Петронас» [Электронный ресурс]. - Режим доступа: #"justify">.Жемчужина GTL [Электронный ресурс]. - Режим доступа: #"justify">23.Exxon Mobil, Qatar Unplug GTL Project [Электронный ресурс]. - Режим доступа: http://www.imakenews.com/lng/e_article000760746.cfm? x=b96T25P, bd1Rfpn


Синтез Фишера - Тропша - это химический процесс, который является ключевой стадией самого современного способа получения синтетических топлив. Почему говорят именно «синтез» или «процесс» и избегают слова «реакция»? Именами ученых, в данном случае Франца Фишера и Ганса Тропша, называют обычно отдельные реакции. Дело в том, что как таковой реакции Фишера - Тропша нет. Это комплекс процессов. Только основных реакций в этом процессе три, а насчитывают их не менее одиннадцати. В целом синтез Фишера - Тропша - это превращение так называемого синтез-газа в смесь жидких углеводородов. Химик Владимир Мордкович о способах получения синтетического топлива, новых типах катализаторов и реакторе Фишера - Тропша.

Владимир Мордкович - доктор химических наук, кафедра физики и химии наноструктур МФТИ, заведующий отделом новых химических технологий и наноматериалов ТИСНУМ, научный директор компании «Инфра Технологии».

Комментарии: 0

    Сланцевый природный газ (англ. shale gas) - природный газ, добываемый из горючих сланцев и состоящий преимущественно из метана. Горючий сланец - твердое полезное ископаемое органического происхождения. Сланцы в основном образовались 450 миллионов лет тому назад на дне моря из растительных и животных остатков.

    Александра Пошибаева

    Сегодня есть две основные гипотезы образования нефти: неорганическая (абиогенная) и органическая (биогенная, и ее также называют осадочно-миграционной). Сторонники неорганической концепции считают, что нефть образовалась из углерода и водорода по процессу Фишера - Тропша на больших глубинах, при огромных давлениях и температурах выше тысячи градусов. Нормальные алканы могут образоваться из углерода, водорода в присутствии катализаторов, однако в природе отсутствуют такие катализаторы. Помимо этого, в нефтях содержится огромное количество изопренанов, циклических углеводородов-биомаркеров, которые по процессу Фишера - Тропша образоваться не могут. О поиске новых месторождений нефти, неорганической теории ее происхождения и роли прокариот и эукариот в образовании углеводородов рассказывает химик Александра Пошибаева.

    Андрей Бычков

    Углеводороды сегодня являются энергетической основой нашей цивилизации. Но надолго ли хватит месторождений горючих ископаемых и что делать после их истощения? Как и других полезных ископаемых, нам придется разрабатывать сырье с меньшим содержанием полезного компонента. Как сделать нефть, из какого сырья? Будет ли это выгодно? Уже сегодня мы имеем много экспериментальных данных. В лекции будут обсуждены вопросы о процессах образования нефти в природе и показаны новые экспериментальные результаты. Обо всем этом вам расскажет Бычков Андрей Юрьевич, доктор геолого-минералогических наук, профессор РАН, профессор кафедры геохимии в МГУ.

    Елена Наймарк

    Американские ученые научились получать оптические изомеры соединений на основе альдегидов, осуществив наконец важную реакцию, над которой химики работали многие годы. В эксперименте они объединили два катализатора, работающие по разным принципам. В результате совместного действия этих катализаторов образуются две активных органических молекулы, которые объединяются в требуемое вещество. На примере этой реакции показана возможность синтеза целого класса биологически важных органических соединений.

    Елена Наймарк

    Последователи Стэнли Миллера, поставившего в 50-х годах знаменитые опыты по имитации синтеза органики в первичной атмосфере Земли, вновь обратились к результатам старых экспериментов. Оставшиеся от тех лет материалы они исследовали новейшими методами. Выяснилось, что в экспериментах, имитировавших вулканические выбросы парогазовой смеси, синтезировался широкий спектр аминокислот и других органических соединений. Их разнообразие оказалось больше, чем это представлялось в 50-е годы. Этот результат акцентирует внимание современных исследователей на условиях синтеза и накопления первичной высокомолекулярной органики: синтез мог активизироваться в районах извержений, а вулканические пеплы и туфы могли стать резервуаром биологических молекул.

    Королёв Ю. М.

    О том, как учёные пытаются разгадать тайну происхождения нефти, а точнее, нефтяных углеводородов, мы попросили рассказать Ю.М. Королёва - ведущего научного сотрудника Института нефтехимического синтеза им. А.В. Топчиева. Он более тридцати лет изучает рентгенографический фазовый состав ископаемых углеводородных минералов и их превращение под действием времени и температуры.

    Родкин М. В.

    Спор о биогенном (органическом) или абиогенном происхождении нефти особенно интересен для российского читателя. Во-первых, углеводородное сырьё - один из основных источников дохода в бюджете страны, а во-вторых, российские учёные - признанные лидеры многих направлений в этом старом, но всё ещё не закрытом научном споре.

    Александр Марков

    В космосе обнаружены разнообразные органические вещества, однако о механизмах их формирования известно немного. Астрофизики и химики из Франции, Дании и Мексики экспериментально показали, что в условиях, имитирующих ранние стадии формирования планетных систем, в водяном льду с примесью метанола и аммиака под действием ультрафиолетового излучения образуются всевозможные углеводы, включая рибозу - важнейшую составную часть РНК. Авторы предполагают, что химический процесс, приводящий к синтезу этих углеводов, схож с автокаталитической реакцией Бутлерова, хотя и не нуждается в присутствии двухвалентных ионов металлов.

    Елена Наймарк

    Миру РНК предшествовало время предбиологического синтеза, когда рождались так или иначе необходимые для репликации молекулы - нуклеотиды, белки, липиды. Прежде химики рассматривали процессы их синтеза по отдельности. Теперь в лаборатории Джона Сазерленда найден путь, который приводит к синтезу сразу большого набора биологических молекул. Нет нужды гадать, что было раньше, РНК или белки, - вероятно, они синтезировались одновременно в едином каскаде химических реакций; в начале его появляется цианистый водород и сероводород с металлическими катализаторами. Эту сеть реакций авторы назвали цианосульфидным протометаболизмом. С выходом в свет нового исследования можно говорить о поворотной точке в науке о происхождении жизни.

    Дмитрий Грищенко

    О добыче сланцевой нефти и газа пишут много и часто. На лекции попробуем разобраться что же представляет из себя данная технология, какие экологические проблемы с ней связаны, а какие - лишь плод воображения журналистов и защитников природы.

Синтез Фишера - Тропша - это химический процесс, который является ключевой стадией самого современного способа получения синтетических топлив. Почему говорят именно «синтез» или «процесс» и избегают слова «реакция»? Именами ученых, в данном случае Франца Фишера и Ганса Тропша, называют обычно отдельные реакции. Дело в том, что как таковой реакции Фишера - Тропша нет. Это комплекс процессов. Только основных реакций в этом процессе три, а насчитывают их не менее одиннадцати. В целом синтез Фишера - Тропша - это превращение так называемого синтез-газа в смесь жидких углеводородов. Синтез-газ - устойчивое выражение, появившееся еще в XIX веке, которым начали обозначать тогда продукт углехимии, представляющий собой смесь оксида углерода (угарного газа) и водорода. Так как из этой газовой смеси можно получать при помощи разных реакций самые разные синтетические продукты, а тут такое название, синтез-газ. Оно такое абсолютно на всех языках. Некоторые сокращают. Англичане говорят syngas . В русском технологическом языке такой традиции нет.

В 1919 году немецкие ученые обнаружили, что если использовать в качестве катализаторов металлы 8-й группы, то при температурах в районе 200 °C (плюс-минус 100 °C) можно получать смеси жидких углеводородов. Сразу было понятно, что это большое открытие и оно позволяет получать углеводородное топливо не из нефти. Для Германии после Первой мировой войны это было особенно важно. Страна находилась, как бы сейчас сказали, под жесткими санкциями. Своей нефти в Германии не было. А уж когда к власти в этой стране пришли нацисты и начали готовиться к войне, стимул стал чрезвычайно острым. Поэтому эти работы были очень серьезно поддержаны германским правительством. В результате в 1919 году было сделано открытие, а в 1934 году уже работал первый промышленный завод, а в 1938-м - еще четыре. И во время Второй мировой войны значительная часть потребностей Германии, а заодно и Японии в топливе удовлетворялась эрзац-топливом, полученным по методу Фишера - Тропша. Скорее всего, из-за этого печального факта эти замечательные ученые так Нобелевскую премию и не получили: слишком хорошо сработали.

Надо сказать, что процесс в том виде, в каком он был изобретен, в каком он был внедрен в промышленность Германии в 1930-е годы, сегодня не смог бы получить одобрения ни одной компании, ни одной группы по одобрению бизнес-планов: он был отвратителен, побочных реакций протекало на этих катализаторах огромное количество, сотни. В результате этих побочных реакций получалось большое количество продуктов. Классический завод первого поколения производил 74 продукта, то есть это целый химический город. Это очень много. И ведь каждый продукт нужно отделить, очистить, привести в продаваемую форму. А среди этих форм - стиральный порошок, мыло, растворители, чистящие средства, всевозможные пластификаторы для полимеров - все это очень нужные вещи. Но представьте себе, что перед вами как перед государственным деятелем или как перед бизнесменом стоит задача получить бензин, дизельное топливо, а тут на вас навешивают еще 71 продукт.

Это тяжело, во все это нужно вкладывать деньги. Поэтому ничего удивительного в том нет, что сразу после поражения Германии и Японии во Второй мировой войне эта промышленность умерла, потому что она не могла никак конкурировать с обычной нефтеперегонкой. Тем более в мире начался нефтяной бум, была открыта дешевая нефть Ближнего Востока, а за ней и другие доступные нефтяные месторождения. Одно, правда, было исключение, очень интересное, а именно: группа немецких ученых переехала в Южно-Африканскую Республику, а Южная Африка, отделившись, как тогда англичане полагали, незаконно от Британской империи, попала в ситуацию вновь политических санкций, эмбарго, тем более там стали развиваться такие неприятные вещи, как апартеид против черного населения, ухудшился доступ к нефтяным ресурсам, и поэтому правительство учредило компанию «Южноафриканская синтетическая нефть». Эта компания живет и здравствует по сей день. Она обеспечила в 1950-е годы развертывание промышленности синтетического топлива и процесса Фишера - Тропша на новом уровне в Южной Африке.

Это было второе поколение этого процесса, уже более интересное, не такое медленное, порождающее не так много побочных продуктов, как первое. Там даже тип химических реакторов был другой. Если в первом поколении применялись кожухотрубные реакторы, то есть катализатор в виде гранул насыпался внутрь реакционных труб и через эти трубы пропускался газ, то во втором поколении уже применялся так называемый кипящий слой. Кстати, гранулы кипели, поддерживаемые очень мощным потоком сырьевого газа снизу. Существенно лучше было это второе поколение, но вновь, как видите, мотивация для того, чтобы оно применялось, была чисто политическая. Был бы у Южно-Африканского Союза нормальный доступ к нефти, никогда бы они этим не занимались. Однако сохранилась компетенция, сохранился научно-технический потенциал и даже перешел на новый уровень.

Третье поколение технологий появилось в связи с нефтяным мировым кризисом 1973 года.

Арабские страны наложили нефтяное эмбарго против стран Запада, и здесь уже интересный эффект: западный мир, где немалую роль уже играли тогда транснациональные корпорации, использовал не государственный механизм, а именно эти корпорации как мотор для нового развития этих технологий. Крупные нефтяные компании изучили опыт южноафриканской компании Sasol и в течение 1970-х - начала 1980-х годов срочно создали третье поколение этих технологий. Это поколение царствует в промышленности по сей день. Оно очень интересное. Количество побочных продуктов у него уменьшилось: оно оставляет около 30, а в лучших своих проявлениях всего-навсего 14. Оно любопытно тем, что катализаторы, которые используются в технологиях третьего поколения, производят не смесь относительно легких и жидких углеводородов, как это делали первое и второе поколения, а так называемые воски, твердые парафины, то есть такие длинноцепочечные углеводороды, что они не являются жидкими в обычных условиях, они твердые, как свечка. Собственно говоря, в том числе и для свечек их используют. Это порождает некоторые дополнительные проблемы, потому что эти твердые вещества надо подвергать дальнейшей обработке, гидрокрекингу, рвать эти слишком длинные цепочки. Но в общетехнологическую логику, которую выстроили авторы технологии третьего поколения, все это прекрасно укладывается. И лидерами этих технологий оказались голландская компания Shell и все та же южноафриканская компания Sasol . Им принадлежат три завода в Южной Азии, где на сегодняшний день наиболее дешевый и доступный газ. И они прекрасно работают.

Очень любопытно, что все это время, пока в Южной Африке развивалось второе поколение, а на Западе - третье, в Советском Союзе 40 лет успешно работал завод первого поколения в Новочеркасске, привезенный по репарациям из Германии. Он до сих пор существует, хотя был остановлен в 1994 году. Хорошо бы из него сделать музей. Так вот, технологии третьего поколения все еще уступают нефтеперерабатывающим заводам - уже немного, но уступают. При наличии выбора у здравого инвестора будет всегда только одно решение: делать бензин или дизельное топливо из нефти. И вот в начале XXI века ряд научных групп в разных странах, в том числе у нас, начал работать над реализацией четвертого поколения, которое отличается тем, что каждая гранула катализатора в нем - это не просто носитель активного металла, а это самая настоящая многофункциональная фабрика, которая делает всё: она делает первичный синтез Фишера - Тропша, получает воск, проводит разбиение на части, группирует по фракциям и получает настоящее последнее топливо. Уже в 2016–2017 годах запланированы к пуску первые небольшие промышленные заводы этого четвертого поколения. И надо сказать, что и в третьем, и в четвертом поколении, так как продукт синтетический и топливо получается разбиением длинных цепочечных молекул, а для того, чтобы катализатор работал, нужно очистить газ от всевозможных примесей, синтетическая нефть получается, как говорят, премиального качества: без ядовитых примесей, без технологически тяжелых компонентов, без смол. И такой продукт является, как я полагаю, будущим отечественного и мирового транспорта и энергетики на весьма долгие годы.

Нефть является единственным глобальным сырьем для производства моторных топлив и важнейшим - для химического синтеза. Однако постепенно ситуация изменяется. Исчерпание мировых запасов нефти вынуждает обратиться к другим источникам углеводородного сырья, наиболее значительными из которых являются уголь и природный газ. Извлекаемые запасы газа в энергетическом эквиваленте превышают нефтяные в 1,5 раза, запасы угля - более чем в 20 раз . По экспертным оценкам, к 2015 г. доля нефти в мировом энергетическом балансе будет составлять 38 %, природного газа - 26 %, угля - 25 % .

Первой стадией превращения природного газа и угля в химические продуты и жидкие топлива является их конверсия в синтез-газ -смесь СО и Н 2 . Далее основные направления переработки синтез-газа выглядят следующим образом:

Синтез метанола;
. производство аммиака;
. оксо-синтез и формилирование ароматических соединений;
. карбонилирование метанола в уксусную кислоту;
. карбоксилирование олефинов;
. синтез Фишера-Тропша (ФТ).

Надо отметить, что получение синтез-газа (паровой конверсией или парциальным окислением метана, газификацией угля) является наиболее дорогой составляющей всего производства. Капитальные затраты на секцию синтез-газа в строительстве завода по получению метанола из природного газа или углеводородов по технологии ФТ из угля составляют 60-70 % .

Синтез Фишера-Тропша (ФТ) представляет собой сложную совокупность последовательных и параллельных превращений, протекающих на поверхности гетерогенного катализатора. Основными являются реакции гидрополимеризации СО с образованием парафинов и олефинов:

nCO + 2nH 2 CnH 2 n + H 2 O, nCO + (2n + 1)H2 н> CnH 2 n + 2 + H 2 O. В присутствии железных катализаторов образуются также значимые количества оксигенатов - спиртов, альдегидов, кетонов и карбоновых кислот. При повышенных температурах в присутствии цеолитных сокатализаторов образуются ароматические соединения. Побочные реакции - прямое гидрирование СО в метан, диспропорционирование СО (реакция Белла-Будуара) и реакция водяного газа, интенсивно протекающая на железных катализаторах:

CO + 3H 2 - CH 4 + H 2 O,

2CO - C + CO 2 , CO + H 2 O - CO 2 + H 2 .

Максимальный теоретически возможный выход углеводородов из 1 нм3 синтез-газа состава СО:Н2 = 1:2 составляет 208 г.

В условиях синтеза ФТ термодинамические вероятности образования продуктов выглядят следующим образом :

Метан > алканы > алкены > О-содержащие;
. низкомолекулярные н-алканы > высокомолекулярные н-алканы;
- высокомолекулярные н-олефины > низкомолекулярные н-олефины.

В действительности выход метана на хороших катализаторах синтеза ФТ не превышает 8 %. Молекулярно-массовое распределение диктуется кинетикой полимеризации (см. ниже). Таким образом, синтез ФТ является кинетически контролируемым процессом, состав конечных продуктов далек от равновесного.

Синтез ФТ - сильно экзотермический процесс. Тепловой эффект реакции гидрополимеризации СО составляет 165 кДж/моль СО, тепловой эффект прямого гидрирования еще выше - 215 кДж/моль. Отвод большого количества тепла в ходе синтеза представляет собой важнейшую проблему при проектировании промышленных установок синтеза ФТ. Катализаторами реакции являются металлы VIII группы. Наибольшую каталитическую активность проявляют Ru, Fe, Co, Ni. Рутений активен уже при 100 °С, в его присутствии при повышенном давлении образуются парафины очень высокой молекулярной массы (полиметилен). Однако этот металл слишком редок и дорог, чтобы рассматриваться в качестве промышленного катализатора. Никелевые контакты при атмосферном давлении обеспечивают в основном прямое гидрирование СО в метан. При повышенном же давлении легко образуется летучий Ni(CO) 4 , так что катализатор вымывается из реактора. В силу этих причин коммерчески использовались только железные и кобальтовые каталитические системы.

Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы) . Типичными для их работы являются давление 1-50 атм и температура 180-250 °С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ. По последним данным, удельная активность кобальтовых катализаторов выше, чем железных .

Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР . По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200-360 °С), и позволяют получать более широкий спектр продуктов: парафины, низшие α-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО:Н 2 ниже стехиометрического 1:2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается, и срок их службы составляет несколько недель. Кобальтовые контакты, напротив, способны работать без регенерации год и более. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, кинетика процесса для железных катализаторов неблагоприятна, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа .

И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м 3 . Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизтопливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.
В синтезе ФТ образуется широкая углеводородная фракция (рис. 1).


Распределение продуктов подчиняется кинетике полимеризации, и доля индивидуальных углеводородов удовлетворяет распределению Андерсона-Шульца-Флори (ASF):
pn = п-(1 - α)2- α n-1, где n - углеродный номер; α - параметр распределения, имеющий физический смысл соотношения между константами скорости роста и обрыва цепи или, иными словами, вероятности роста цепи (рис. 2). Величина α определяется природой катализатора, температурой и давлением процесса. Для каждого класса продуктов, одновременно образующихся на одном и том же контакте (парафины, олефины, спирты), величина а может быть различной. Иногда наблюдается


Включением низших олефинов в растущую цепь;
. крекингом высших парафинов;
- присутствием на поверхности двух и более видов центров полимеризации, каждый из которых обеспечивает свое значение α.
Распределение ASF накладывает ограничение на селективность процесса в отношении индивидуальных углеводородов и их узких фракций. Так, выход бензиновой фракции С5-С10 не может превысить 48%, дизельной фракции С11-С18 - 30%. Однако селективность в отношении твердых парафинов монотонно растет с повышением α и асимптотически приближается к 100 % (рис. 3). Если полученные парафины подвергнуть мягкому гидрокрекингу, выход фракции газойля можно довести до 60 % на прореагировавшее сырье .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

Процесс Фишера-Тропша

Введение

углеводород катализатор технологический

История знает немало примеров, когда в силу острой необходимости рождались новые оригинальные подходы к решению давно существующих жизненно важных проблем. Так, в предвоенной Германии, лишенной доступа к нефтяным источникам, назревал жесткий дефицит топлива, необходимого для функционирования мощной военной техники. Располагая значительными запасами ископаемого угля, Германия была вынуждена искать пути его превращения в жидкое топливо. Эта проблема была успешно решена усилиями превосходных химиков, из которых, прежде всего, следует упомянуть Франца Фишера, директора Института кайзера Вильгельма по изучению угля.

В 1926 году была опубликована работа Франца Фишера и Ганса Тропша «О прямом синтезе нефтяных углеводородов при обыкновенном давлении» . В ней сообщалось, что при восстановлении водородом монооксида углерода при атмосферном давлении в присутствии различных катализаторов (железо-оксид цинка или кобальт-оксид хрома) при 270єС получаются жидкие и даже твердые гомологи метана.

Так возник знаменитый синтез углеводородов из монооксида углерода и водорода, называемый с тех пор синтезом Фишера-Тропша (ФТ). Смесь CO и H 2 в различных соотношениях, называемая синтез-газом, может быть получена как из угля, так и из любого другого углеродсодержащего сырья. После изобретения процесса германскими исследователями было сделано множество усовершенствований и исправлений и название «Фишер-Тропш» сейчас применяется к большому количеству сходных процессов.

Справедливости ради следует отметить, что синтез Фишера-Тропша возник не на пустом месте - к тому времени существовали научные предпосылки, которые базировались на достижениях органической химии и гетерогенного катализа. Еще в 1902 году П. Сабатье и Ж. Сандеран впервые получили метан из СО и H 2 . В 1908 году Е. Орлов открыл, что при пропускании монооксида углерода и водорода над катализатором, состоящим из никеля и палладия, нанесенных на уголь, образуется этилен .

Первый промышленный реактор был пущен в Германии в 1935 году, использовался Co-Th осажденный катализатор. В 1930-40-е годы на основе технологии Фишера-Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40ч55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75ч100 и твердого парафина. Сырьем для процесса служил уголь, из которого газификацией получали синтез-газ, а из него углеводороды. Промышленность искусственного жидкого топлива достигла наибольшего подъема в годы второй мировой войны. К 1945 г. в мире имелось 15 заводов синтеза Фишера-Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн. т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла. В Германии синтетическое топливо почти полностью покрывало потребности немецкой армии в авиационном бензине. Годовое производство синтетического топлива в этой стране достигло более 124 000 баррелей в день, т.е. около 6,5 миллионов тонн в 1944 году .

После 1945 года в связи с бурным развитием нефтедобычи и падением цен на нефть отпала необходимость синтеза жидких топлив из СО и Н 2 . Наступил нефтехимический бум. Однако в 1973 году разразился нефтяной кризис - нефтедобывающие страны ОПЕК (Organization of Petroleum Exporting Countries, Организация стран-экспортеров нефти) резко повысили цены на сырую нефть, и мировое сообщество вынуждено было осознать реальную угрозу истощения в обозримые сроки дешевых и доступных нефтяных ресурсов. Энергетический шок 70-х годов возродил интерес ученых и промышленников к использованию альтернативного нефти сырья, и здесь первое место, бесспорно, принадлежит углю. Мировые запасы угля огромны, они, по различным оценкам, более чем в 50 раз превосходят нефтяные ресурсы, и их может хватить на сотни лет .

Кроме этого, в мире имеется значительное количество источников углеводородных газов (как непосредственно залежи природного газа, так и попутный нефтяной газ), которые по тем или иным причинам не используются по экономическим причинам (значительная удаленность от потребителей и, как следствие, большие затраты на транспортировку в газообразном состоянии). Однако мировые запасы углеводородов иссякают, потребности в энергии растут, и в этих условиях расточительное использование углеводородов недопустимо, о чем свидетельствует неуклонный рост мировых цен на нефть с начала 21 века.

В этих условиях синтез Фишера-Тропша снова приобретает актуальность.

1. Химизм процесса

1.1 Основные реакции образования углеводородов

Суммарные реакции синтеза углеводородов из оксидов углерода и водорода в зависимости от катализатора и условий процесса можно представить разными уравнениями, но все они сводятся к двум основным . Первая основная реакция - собственно синтез Фишера-Тропша:

(1)

Вторая основная реакция - равновесие водяного газа. Этот процесс особенно легко протекает на железных катализаторах как вторичный:

(2)

С учетом этой вторичной реакции для ФТ-синтеза на железных катализаторах получается суммарное уравнение:

(3)

Реакции (1) и (3) при стехиометрическом, исчерпывающем превращении позволяют получить максимальный выход 208,5 г углеводородов на 1 м 3 смеси CO + Н 2 при образовании только олефинов.

Реакция (2) может подавляться при низких температурах, малом времени контакта, циркуляции синтез-газа и удалении воды из циркулирующего газа, так что синтез может протекать частично по уравнению (1) с образованием воды и частично по уравнению (3) с образованием СO 2 .

Из уравнения (1) при удвоенном превращении по уравнению (2) получается суммарное уравнение синтеза углеводородов из СО и Н 2 O по Кёльбелу-Энгельгардту:

(4)

Стехиометрический выход равен 208,5 г [-СН 2 -] на 1 м 3 смеси СО + Н 2 .

Образование углеводородов из СО 2 и Н 2 обусловлено уравнением (1) и реакцией, обратной (2):

(5)

Стехиометрический выход 156,25 г. [-СН 2 -] на 1 м 3 смеси СO 2 + Н 2 .

В общем виде уравнения выглядят следующим образом:

Для синтеза парафинов

(6)

(7)

(8)

(9)

Для синтеза олефинов

(10)

(11)

(12)

(13)

1.2 Побочные реакции

Нежелательными реакциями следует считать гидрирование СО в метан, разложение СО и окисление металла водой или диоксидом углерода.

Метан образуется в присутствии кобальтовых и никелевых катализаторов:

(14)

Стехиометрический выход 178,6 г СН 4 на 1 м 3 смеси СО + Н 2 . Вода, образующаяся при этом, конвертируется затем (особенно на железных катализаторах) в присутствии СО в смесь СО 2 + Н 2 , поэтому суммарная реакция образования метана иная:

(15)

Стехиометрический выход 178,6 г СН 4 на 1 м 3 смеси СО + Н 2 . При температурах выше 300°С метан образуется также при гидрировании СО 2 по суммарному уравнению:

(16)

Стехиометрический выход 142,9 г СН 4 на 1 м 3 смеси СO 2 + H 2 . Процесс синтеза осложняется образованием углерода по реакции Будуара:

(17)

ФТ-синтез может быть направлен в сторону преимущественного образования спиртов или альдегидов, которые при синтезе углеводородов образуются как побочные продукты. Основные уравнения в случае спиртов следующие

(18)

(19)

(20)

а альдегиды образуются так:

(21)

(22)

Уравнения для других продуктов, образующихся в небольшом количестве (кетоны, карбоновые кислоты, эфиры), опущены.

1.3 Механизм реакций

Гидрирование оксида углерода в процессе ФТ представляет собой комплекс сложных, параллельных и последовательных реакций. Первая стадия - одновременная хемосорбция оксида углерода и водорода на катализаторе. Оксид углерода в этом случае соединяется углеродным атомом с металлом, вследствие чего ослабляется связь С-О и облегчается взаимодействие СО и водорода с образованием первичного комплекса. С этого комплекса и начинается рост углеводородной цепи («начало цепи»). В результате дальнейшего ступенчатого присоединения поверхностного соединения, несущего один углеродный атом, углеродная цепочка удлиняется («рост цепи»). Рост цепи заканчивается в результате десорбции, гидрирования или взаимодействия растущей цепочки с продуктами синтеза («обрыв цепи»).

Основные продукты этих реакций - насыщенные и ненасыщенные углеводороды алифатического ряда, а побочные продукты - спирты, альдегиды и кетоны. Реакционноспособные соединения (ненасыщенные углеводороды, альдегиды, спирты и др.) могут при последующих реакциях встраиваться в растущие цепи или образовывать поверхностный комплекс, дающий начало цепи. В дальнейшем реакции между образующимися продуктами приводят к кислотам, эфирам и т.д. Реакции дегидроциклизации, протекающие при более высоких температурах синтеза, приводят к ароматическим углеводородам. Не следует исключать также протекание крекинга или гидрокрекинга более высококипящих углеводородов, первично образовавшихся и десорбированных с катализатора, если они снова адсорбируются на нем.

Механизм реакции, несмотря на десятилетия его изучения, в деталях остается неясен . Впрочем, эта ситуация типична для гетерогенного катализа. Наиболее признанным является механизм с ростом на конце цепи . Молекулы или атомы, переходящие в возбужденное состояние при одновременной хемосорбции оксида углерода и водорода на катализаторе, реагируют с образованием енольного первичного комплекса (схема А 1), который также дает начало цепи. Рост цепи (схема А 2) начинается с отщепления молекулы Н 2 O от двух первичных комплексов (с образованием С-С-связи) и отрыва атома С от атома металла в результате гидрирования. Образовавшийся комплекс С 2 , присоединяя один первичный комплекс, выделяет молекулу Н 2 O и в результате гидрирования освобождается от металла. Так, путем конденсации и гидрирования происходит ступенчатый рост цепи на каждый последующий С-атом. Начало цепи можно изобразить так:

Схема А 1

Рост цепи у крайних С-атомов идет так:

Схема А 2

и так далее до:

Другая возможность состоит в том, что первоначально связь Me-С в первичном адсорбционном комплексе частично гидрируется, а затем образовавшееся соединение конденсируется с первичным комплексом, что ведет к наращиванию цепи по схеме (А 3) или по схеме (А 4) и в результате образуется вторичный метилразветвленный адсорбционный комплекс:

Схема А 3

Схема А 4

Десорбция первичного адсорбционного комплекса, всегда содержащего гидроксигруппу, приводит к альдегидам, а при последующих реакциях - к спиртам, кислотам и эфирам:

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Углеводороды могут образоваться в результате дегидратации или расщепления адсорбционных комплексов:

Схема А 5

Начало цепи могут также дать спирты и альдегиды после их адсорбции на катализаторе в фенольной форме

или олефины, которые, вероятно, после взаимодействия с водой связаны в енольной форме на катализаторе.

В качестве еще одной возможности роста цепи рассматривается полимеризация СН 2 -групп. При гидрировании первичного комплекса образуются НО-СН 2 - и СН 2 -поверхностные комплексы:

Схема Б

Гидрированный поверхностный комплекс взаимодействует с аналогичным комплексом с отщеплением воды (Б 1):

Схема Б 1

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Точно так же образовавшиеся поверхностные комплексы могут взаимодействовать с первичным, негидрированным комплексом (с образованием С 2 -аддитивного комплекса по схеме Б 2) или реагировать с комплексом после его гидрирования (по схеме Б 1):

Схема Б 2

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Цепь может расти и путем полимеризации первично образовавшихся СН 2 -групп по схеме В (с изменением заряда на Me):

Схема В

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Вклад полимеризации в процесс роста цепи зависит от соотношения скоростей конденсации и полимеризации.

2. Катализаторы

ФТ-синтез начинается с одновременной хемосорбции СО и Н 2 на атомах металла. Для образования такой хемосорбционной связи особенно пригодны переходные металлы с 3d- и 4f-электронами или их соединения внедрения (карбиды, нитриды и т.д.). Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, например, силикагель и глинозем. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан, при повышении же давления никель образует летучий карбонил и вымывается из реактора .

Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы). Типичными для их работы являются давление 1ч50 атм и температура 180ч250°С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ.

Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР. По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200ч360°С), и позволяют получать более широкий спектр продуктов: парафины, низшие б-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО: Н 2 ниже стехиометрического 1: 2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается. Кобальтовые контакты способны работать без регенерации значительно дольше. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа .

И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м 3 . Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизельное топливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.

При воздействии различных агентов на свежеприготовленные катализаторы группы железа изменяется состав и структура катализаторов, появляются фазы, действительно активные в ФТ-синтезе. В то время как число таких фаз в случае кобальта и никеля относительно небольшое, для железа их много, поэтому каталитическая система усложняется. Железо образует с углеродом или другими металлоидами (азот, бор и т.д.) соединения внедрения различного состава, не утрачивая при этом «металлического» характера, необходимого для ФТ-сннтеза.

Многие исследования подтвердили, что железные катализаторы в ходе ФТ-синтеза изменяются по фазовому составу, степени окисления и углеродным структурам внедрения. Железо восстановленного катализатора к началу синтеза переходит в карбид Fe 2 C (карбид Хэгга). Одновременно, но медленнее, образуется оксид Fe 3 O 4 , доля которого (в расчете на исходное железо) постоянно повышается, в то время как содержание карбида Fe 2 C в зависимости от времени работы и температуры меняется мало. Содержание свободного углерода возрастает с увеличением времени синтеза. В условиях эксплуатации фазовый состав катализатора находится в равновесии с составом реакционной смеси и только в малой степени зависит от способа его приготовления или предварительной обработки (восстановление, карбидирование) .

В работе Бартоломью показано, что на Co- и Ni - катализаторах СО гидрируется в метан по двум маршрутам, каждый из которых связан с определенными участками на поверхности . А.Л. Лапидус с сотрудниками выдвинули двухцентровую модель Co-катализатора синтеза ФТ. Согласно этим представлениям, центрами первого типа являются кристаллиты металлического Со. На них СО адсорбируется диссоциативно и затем гидрируется в метан. На этих же центрах происходит реакция диспропорционирования CO, приводящая к зауглероживанию катализатора. Центры второго типа представляют собой границу между металлическим Со и оксидной фазой на поверхности катализатора. Они ответственны за рост углеводородной цепи. Оксид углерода адсорбируется на СоO в слабосвязанной ассоциативной форме, затем перемещается на носитель, где образует с водородом поверхностные комплексы типа CH x O. Эти комплексы взаимодействуют друг с другом, образуя полимерные структуры на поверхности. Их гидрирование на СоO дает углеводороды.

Два типа адсорбции СО на поверхности обнаруживаются по спектру термопрограммированной десорбции (ТПД) СО, в котором центрам первого типа отвечает пик с T max в области 250-350°С, центрам второго - T max < 250°C. По соотношению площадей пиков можно судить о доле каждого из типов центров и, соответственно, предсказывать каталитическое действие контакта.

Эксперименты показали хорошую корреляцию между выходом углеводородов и количеством центров слабосвязанной адсорбции СО на поверхности контакта .

Оксидная фаза Со-катализаторов обычно формируется в процессе их предварительной термообработки (прокаливания и / или восстановления) вследствие взаимодействия оксидного носителя (SiO 2 , Al 2 O 3 и др.), оксида кобальта и промотора. Катализаторы, не содержащие оксидной фазы, не способны катализировать образование жидких углеводородов из СО и Н 2 , поскольку не имеют на своей поверхности центров полимеризации.

Таким образом, оксидная фаза катализаторов синтеза ФТ играет определяющую роль в образовании жидких углеводородов, и для создания эффективных катализаторов этого процесса необходимо особое внимание уделять подбору носителя и проведению предварительной термообработки катализатора. Воздействуя на активную часть катализатора путем предварительной термообработки, приводящей к усилению взаимодействия активной фазы с носителем, или вводя в состав катализатора модифицирующие оксидные добавки, можно усилить полимеризационные свойства катализатора и, следовательно, увеличить селективность реакции в отношении образования жидких углеводородов.

Промоторы по принципу действия подразделяются на две группы - структурные и энергетические.

В качестве структурных промоторов используются трудно восстанавливаемые оксиды тяжелых металлов, например Аl 2 О 3 , ThO 2 , MgO и СаО. Они способствуют образованию развитой поверхности катализатора и препятствуют рекристаллизации каталитически активной фазы. Подобную функцию выполняют и носители - кизельгур, доломит, диоксид кремния (в форме свежеосажденного геля гидроксида или силиката калия).

Энергетические промоторы, которые также называют химическими, электронными или активирующими добавками, согласно электронному механизму реакции, увеличивают ее скорость и влияют на селективность. В качестве энергетических промоторов могут действовать также химически активные структурные промоторы. Энергетические промоторы (особенно щелочи) значительно влияют и на текстуру катализатора (поверхность, распределение пор).

В качестве энергетических промоторов для железных катализаторов (независимо от способа получения) чаще всего используют карбонаты щелочных металлов. Железным катализаторам, получаемым разными способами, соответствует неодинаковая оптимальная концентрация щелочной добавки. Осажденные катализаторы не должны содержать более 1% К 2 СО 3 (в расчете на Fe); для определенных осажденных катализаторов оптимум составляет 0,2% К 2 СО 3 (отклонение в 0,1% заметно влияет на активность и селективность). Для плавленых катализаторов указана оптимальная концентрация? 0,5% К 2 О.

К промоторам, обусловливающим и структурное, и энергетическое влияние, можно отнести медь. Медь облегчает восстановление железа, причем этот процесс в зависимости от количества меди может протекать при температуре, более низкой (вплоть до 150°С), чем без добавки. Далее эта добавка при сушке гидроксида железа (II и III) способствует окислению его до Fe 2 O 3 . Медь благоприятствует образованию соединений железа с углеродом и вместе со щелочью ускоряет восстановление железа, образование карбида и углерода. На селективность ФТ-синтеза медь не влияет .

3. Факторы, влияющие на процесс

3.1 Качество сырья

Выход и состав продуктов ФТ-синтеза в значительной степени зависит от соотношения СО: Н 2 в исходном синтез-газе. Это соотношение в свою очередь существенно зависит от применяемого способа получения синтез-газа. В настоящее время существуют три основных промышленных метода получения последнего.

1. Газификация угля. Процесс основан на взаимодействии угля с водяным паром:

Эта реакция является эндотермической, равновесие сдвигается вправо при температурах 900ч1000єС. Разработаны технологические процессы, использующие парокислородное дутье, при котором наряду с упомянутой реакцией протекает экзотермическая реакция сгорания угля, обеспечивающая нужный тепловой баланс:

2. Конверсия метана. Реакция взаимодействия метана с водяным паром проводится в присутствии никелевых катализаторов (Ni/Al 2 O 3) при повышенных температурах (800ч900єС) и давлении:

В качестве сырья вместо метана может быть использовано любое углеводородное сырье.

3. Парциальное окисление углеводородов. Процесс заключается в неполном термическом окислении углеводородов при температурах выше 1300єС:

Способ также применим к любому углеводородному сырью.

При газификации угля и парциальном окислении соотношение СО: Н 2 близко к 1: 1, тогда как при конверсии метана оно составляет 1: 3 .

В целом, можно отметить следующие закономерности :

- в случае исходной смеси, обогащенной водородом, получаются предпочтительно парафины, причем термодинамическая вероятность их образования уменьшается в ряду метан > низкомолекулярные н-алканы > высокомолекулярные н-алканы;

- синтез-газ с высоким содержанием оксида углерода ведет к образованию олефинов и альдегидов, а также способствует отложению углерода. Вероятность образования алкенов уменьшается в ряду высокомолекулярные н-олефины > низкомолекулярные н-олефины.

3.2 Температура

ФТ-синтез - сильно экзотермическая реакция. Образующееся тепло составляет до 25% от теплоты сгорания синтез-газа. Скорость синтеза и одновременно выход продукта с единицы объема катализатора за единицу времени повышаются с увеличением температуры. Однако скорость побочных реакций при этом также возрастает. Поэтому верхняя температура ФТ-синтеза ограничена в первую очередь нежелательным метано- и коксообразованием . Особенно сильное увеличение выхода метана при повышении температуры наблюдается для Co катализаторов.

Как правило, процесс проводится при температуре 190ч240°C (низкотемпературный вариант, для Co и Fe катализаторов) или 300ч350°C (высокотемпературный вариант, для Fe катализаторов) .

3.3 Давление

Так же, как при повышении температуры, с ростом давления растет и скорость реакций. Кроме этого, повышение давления в системе способствует образованию более тяжелых продуктов. Типичными значениями давлений для промышленных процессов являются 0,1ч5 МПа. Так как повышенное давление позволяет увеличить производительность синтеза, для экономической эффективности процесс проводят при давлении 1,2ч4 МПа.

Совместное влияние температуры и давления, а также природы катализатора на выход различных продуктов удовлетворяет распределению Андерсона-Шульца-Флори (ASF), описываемому формулой

где P n - массовая доля углеводорода с углеродным номером n;

б=k 1 /(k 1 +k 2), k 1 , k 2 - константы скорости роста и обрыва цепи соответственно.

Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина б снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину б. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции .

Графически распределение ASF представлено на рисунке 1.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

3.4 Объемная скорость

Повышение объемной скорости (или уменьшение времени контакта) газа не благоприятствует реакциям, протекающим с более низкой скоростью. К ним принадлежат реакции, идущие на поверхности катализатора, - отщепление кислорода, гидрирование олефинов и рост углеродной цепи. Поэтому с уменьшением среднего времени контакта в продуктах синтеза повышается количество спиртов, олефинов и соединений с короткой цепью (газообразные углеводороды и углеводороды из интервала выкипания бензиновой фракции) .

4. Разновидности технологических схем

Главной технической проблемой синтеза Фишера-Тропша является необходимость съема большого количества теплоты, выделяющейся в результате сильно экзотермических химических реакций. Конструкция реактора во многом определяется также видом продуктов, для получения которых он предназначен. Существуют несколько разновидностей конструкции реакторов для ФТ-синтеза, которые определяют ту или иную технологическую схему процесса.

4.1 Схема с многотрубным реактором и стационарным слоем катализатора

В таких реакторах протекает низкотемпературный процесс в газовой фазе. Конструкция многотрубного реактора представлена на рисунке 2.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Многотрубные реакторы просты в эксплуатации, не создают проблем с отделением катализатора, могут использоваться для получения продуктов любого состава. Однако они имеют целый ряд недостатков: сложность в изготовлении, большая металлоемкость, сложность процедуры перегрузки катализатора, значительный перепад давления по длине, диффузные ограничения на крупных зернах катализатора, сравнительно невысокий теплоотвод .

Одна из возможных технологических схем высокопроизводительного ФТ-синтеза в многотрубном реакторе представлена на рисунке 3.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Технологические параметры представлены в таблице 1, состав получаемых продуктов - в таблице 2.

Таблица 1 - Условия работы промышленных установок газофазного синтеза Фишера-Тропша на стационарном слое катализатора

Таблица 2 - Типичный состав углеводородов, получаемых в промышленных синтезах Фишера-Тропша на стационарном слое катализатора

Характеристика

Значение

Состав продукта (средние данные), % масс.

углеводороды:

Степень превращения смеси СО + Н 2 , %

Выход углеводородов С 2+ , г на 1 м 3 смеси СО + Н 2

4.2 Схема с псевдоожиженным слоем катализатора

Реакторы с кипящим слоем обеспечивают хороший теплоотвод и изотермическое протекание процесса. Диффузные ограничения в них минимальны за счет высокой линейной скорости газа и использования мелкодисперсного катализатора. Однако такие реакторы сложно вывести на рабочий режим. Проблемой является отделение катализатора от продуктов. Отдельные узлы подвергаются сильной эрозии. Принципиальным ограничением реакторов с кипящим слоем является невозможность получения в них тяжелых парафинов . На рисунке 4 представлена технологическая схема ФТ-синтеза в реакторе с псевдоожиженным слоем катализатора.

Рисунок 4. Схема процесса Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора:

1, 3 - подогреватели; 2 - генератор синтез-газа; 4 - теплообменники; 5 - промывная колонна; 6 - реактор; 7 - циклон; 8 - сепаратор.

Технологические параметры процесса при работе по рассматриваемой схеме представлены в таблице 3, состав получаемых продуктов - в таблице 4.

Таблица 3 - Условия работы промышленной установки синтеза Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора

Таблица 4 - Типичный состав углеводородов, получаемых в реакторе с псевдоожиженным слоем катализатора

4.3 Схема с циркулирующим взвешенным порошкообразным катализатором

Данная схема также относится к высокотемпературному процессу Ф-Т. Технологическая схема процесса Фишера-Тропша в потоке взвешенного порошкообразного катализатора приведена на рисунке 5.

Рисунок 5. Схема ФТ-синтеза в потоке взвешенного порошкообразного катализатора:

1 - печь; 2 - реактор; 3 - холодильники; 4 - колонна-сепаратор для промывки маслом; 5 - конденсатор; 6 - разделительная колонна; 7 - колонна для промывки получаемого бензина; 8 - колонна для промывки газа.

Технологические параметры синтеза в случае проведения процесса в потоке взвешенного порошкообразного катализатора представлены в таблице 5, состав получаемых продуктов - в таблице 6.

Таблица 5 - Условия работы промышленных установок синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

Таблица 6 - Типичный состав углеводородов, получаемых на установке синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

4.4 Схема с барботажным (slurry) реактором

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реактор барботажного типа, который также называют пузырьковым (slurry), считается наиболее эффективным для синтеза ФТ. В этом аппарате синтез-газ проходит снизу вверх через слой высококипящего растворителя, в котором суспензирован мелкодисперсный катализатор. Подобно реакторам с кипящим слоем, в пузырьковом реакторе обеспечиваются эффективный массообмен и теплоотвод. В то же время в нем возможно получение тяжелых продуктов, как в трубчатом аппарате . На рисунке 6 представлена схема работы такого реактора.

Технологическая схема с применением барботажного реактора представлена на рисунке 7.

Рисунок 7. Схема ФТ-синтеза в барботажном реакторе:

1 - компрессор; 2 - расходомеры;.3 - диафрагмы; 4 - пробоотборники; 5 - реактор: 6 - паросборник; 7 - теплообменник; 8 - продуктовые емкости; 9 - разделительные емкости; 10 - насосы; 11 - холодильник; 12 - установка для выделения СО 2 ; 13 - фильтр; 14 - аппарат для приготовления катализаторной суспензии; 15 - центрифуга; 16 - емкость для масла.

На примере данной схемы можно отметить большую технологическую гибкость синтеза ФТ, когда варьируя качеством сырья и технологическими показателями можно получать продукт требуемого фракционного состава (таблица 7).

Таблица 7 - Состав продуктов при различных режимах ведения ФТ-синтеза в барботажном реакторе

Показатели

Получение разных продуктов

с низкой мол. массой

со средней мол. массой

с высокой мол. массой

Выход суммарного продукта С 3+ , г на 1 м 3 смеси СО+Н 2

Значения технологических параметров для рассматриваемой схемы приведены в таблице 8.

Таблица 8 - Условия работы промышленных установок синтеза Фишера-Тропша с барботажным реактором

Параметр

Значение

Давление, МПа

Температура,°С

Соотношение Н 2: СО в исходном газе

Объемная скорость, ч -1

Степень превращения

СО

смеси СО + Н 2 , %

89ч92

Выход углеводородов С 1+ , г на 1 м 3 смеси СО + Н 2

Для получения низкомолекулярных углеводородов применяются более высокие температура и объемная скорость, но пониженное давление. Если же требуются высокомолекулярные парафины, то указанные параметры соответственно меняют .

5. Современные производства

Сравнительно невысокие мировые цены на нефть, незначительно колеблющиеся около $20 (в пересчете на стоимость доллара США 2008 года) после второй мировой войны до 70-х годов 20 века , долгое время делали строительство крупных производств, основанных на синтезе Фишера-Тропша, нерентабельными. Многотоннажные производства синтетических углеводородов из синтез-газа существовали и развивались лишь в ЮАР, однако и это было обусловлено не экономической выгодой, а политической и экономической изоляцией страны при режиме апартеида. И в настоящее время заводы компании Sasol (South African Coal, Oil and Gas Corporation) остаются одними из самых производительных в мире .

В современных условиях предприятия, использующие процесс ФТ, способны рентабельно работать при цене на нефть более $40 за баррель. В случае, если по технологической схеме предусматривается улавливание и хранение либо утилизация углекислого газа, образующегося при синтезе, эта цифра возрастает до $50ч55 . Так как мировые цены на нефть не опускались ниже этих отметок с 2003 года , строительство крупных предприятий по производству синтетических углеводородов из синтез-газа не заставило себя ждать. Примечательно, что большинство проектов осуществляется в Катаре, богатым природным газом.

Ниже описаны крупнейшие действующие и строящиеся предприятия GTL (Gas to liquid, «газ в жидкость»), основанные на синтезе ФТ.

5.1 Sasol 1, 2, 3. PetroSA

Южноафриканской компанией Sasol накоплен огромный опыт в промышленном применении синтеза ФТ. Первый пилотный завод Sasol 1 был пущен в 1955 году, сырьем для которого служит синтез-газ, получаемый методом газификации угля. Ввиду действия торговых эмбарго в отношении ЮАР в 50-х - 80-х годах 20 века, для обеспечения страны энергоносителями в 1980 и 1984 годах были введены в строй два более крупных производства - Sasol 2 и Sasol 3 .

Помимо этого компания Sasol является лицензиаром процесса GTL для южноафриканской государственной нефтяной компании PetroSA. Ее предприятие, также известное как Mossgas, работает с 1992 года. Сырьем является природный газ, добываемый в открытом море .

На протяжении многолетней эксплуатации производств Sasol инженеры компании стремились улучшить технологию синтеза, в работе были опробованы все четыре типа реакторов, описанных в разделе 4, начиная с многотрубных реакторов, работающих при атмосферном, а позже при повышенном давлении, и заканчивая барботажными реакторами.

Предприятия Sasol поставляют на рынок как моторные топлива, так и сырье для нефтехимии (олефины, спирты, альдегиды, кетоны и кислоты, а также фенол, крезолы, аммиак и серу) .

5.2 Oryx

Данное предприятие введено в эксплуатацию в 2007 году в Катаре. Лицензиаром выступили совместно компании Sasol и Chevron, сформировав международное совместное предприятие Sasol Chevron Limited.

Исходный природный газ подвергается паровому риформингу, после чего полученный синтез-газ подается в барботажный реактор, где проходит низкотемпературный ФТ-синтез. Продукты синтеза подвергаются гидроочистке и гидрокрекингу.

Товарными продуктами являются экологически чистое дизельное топливо (менее 5 ppm серы, менее 1% ароматических углеводородов, цетановое число около 70), а также нафта, используемая как сырье для пиролиза .

5.3 SMDS

Компания Shell в 1993 году ввела в эксплуатацию свой завод Shell MDS (Middle Distillate Synthesis, синтез средних дистиллятов) в Малайзии. В основе процесса лежит современная модификация процесса ФТ. Синтез-газ для проведения реакции ФТ получают парциальным окислением природного газа. Процесс осуществляется в многотрубных реакторах, заполненных высокопроизводительным катализатором. Продукты синтеза (преимущественно высокомолекулярные алканы) подвергаются гидрокрекингу и гидроизомеризации.

Производство направлено на получение высококачественных синтетических дизельного топлива и керосина, а также парафинов .

5.4 Pearl

Предприятие Pearl включает в себя крупнейшее в мире производство GTL, созданное компанией Shell совместно с Qatar Petroleum. Первая очередь комплекса пущена в мае 2011 года, выход на полную мощность запланирован на 2012 год . Технологический процесс, в общем, является развитием технологий, используемых на заводе SMDS. Цепочка процессов идентична: природный газ, добытый на шельфовых месторождениях, подвергается частичному окислению с получением смеси Н 2 и СО; затем синтез-газ претерпевает превращения в многотрубных реакторах (24 аппарата) в парафины с длинной цепью. Последние в результате гидрокрекинга и разделения дают товарные продукты: моторные топлива, нафту (сырье для нефтехимии), а также в роли побочных продуктов базовые смазочные масла и парафины .

5.5 Escravos

Данный GTL-проект, осуществляемый в Нигерии, изначально разрабатывался совместно Sasol и Chevron Corporation, как и Oryx. Однако из-за существенно возросших затрат на осуществление проекта Sasol покинул его. В настоящий момент предприятие строится с участием Chevron Nigeria Limited и Nigerian National Petroleum Company. Ввод в эксплуатацию завода запланирован на 2013 год. Исходным сырьем является природный газ. Собственно ФТ-синтез будет осуществляться в барботажных реакторах. Отличительной чертой технологической схемы является использование фирменного процесса ISOCRACKING компании Chevron, благодаря которому крекируются до легких и средних дистиллятов и облагораживаются синтетические парафины - продукты ФТ-синтеза.

Товарной продукцией являются моторные топлива (в первую очередь дизельное), нафта, а также кислородосодержащие продукты - метанол и диметиловый эфир .

В таблицу 9 сведена общая информация об описанных выше производствах синтетических углеводородов .

Таблица 9 - Современные мощности GTL в мире

Компания

Разработчик технологии

Место расположения

Мощность, баррелей / сутки

Сасолбург, ЮАР

Секунда, ЮАР

Petro SA

(бывший Mossgas)

Моссел Бей, ЮАР

Бинтулу, Малайзия

Эскравос, Нигерия

34000 (проект)

Рас Лаффан, Катар

Рас Лаффан, Катар

Кроме этого, перспективным является строительство заводов ФТ-синтеза в Алжире (до 33 тыс. баррелей в день) и Иране (до 120 тыс. баррелей в день).

Имеется информация о совместной разработке Sasol и норвежской Statoil установок, расположенных на морских платформах или даже плавучих заводов по переработке природного и попутного газа в жидкие углеводороды. Однако про осуществление этого проекта ничего не известно .

Разработан базовый проект и ведутся дальнейшие переговоры по строительству в Узбекистане завода GTL. На нем планируется перерабатывать метан, производимый Шуртанским газохимическим комплексом, по технологии компаний Sasol и Petronas .

Компании ExxonMobil, Syntroleum, ConocoPhillips занимаются исследованиями в области GTL-процессов, однако, эти фирмы пока имеют в своем распоряжении лишь пилотные установки, используемые для исследовательских целей .

Заключение

Синтез Фишера-Тропша позволяет получать из природных горючих ископаемых, используемых в настоящее время преимущественно как топливо для тепло- и электростанций (уголь, природный газ) или вовсе сжигаемых на факелах либо выбрасываемых в атмосферу (попутный нефтяной газ), высококачественные моторные топлива и ценное сырье для последующего химического синтеза. Преимущественно по первому пути идет развитие технологий компании Shell, процессы же фирмы Sasol сочетают оба направления. На рисунке 8 представлены возможные варианты переработки первичных продуктов ФТ-синтеза.

Рисунок 8. Направления переработки синтетических углеводородов.

Качество получаемого в процессе ФТ по технологии Sasol Chevron дизельного топлива представлено в таблице 10 .

Таблица 10 - Характеристика синтетического ДТ

Характеристика

Синтетическое ДТ

Требования стандарта

Плотность при 15єС, кг/м 3

Температура выкипания 95% фракции, єС

Кинематическая вязкость при 40єС, мм 2 /с

Температура вспышки, єС

Цетановое число

Температура помутнения

Удачный либо неудачный опыт эксплуатации современных GTL-производств, в первую очередь Pearl - самого современно и крупного GTL-предприятия - вероятно определит будущее развитие технологии и заводов, использующих процесс ФТ. У GTL-технологии, помимо нестабильных цен на нефть, есть другие существенные проблемы.

Первая из них - очень высокая капиталоемкость. По расчетам, вложение в завод производительностью 80 тыс. баррелей синтетических углеводородов в день, исходным сырьем для которого является уголь, составляют от $7 млрд. до $9 млрд. Для сравнения: НПЗ такой же производительности обойдется в $2 млрд. Большая часть капитальных затрат (60ч70%) приходится на комплекс получения синтез-газа . Реальные цифры подтверждают расчеты: затраты на возводимый в Нигерии Escravos GTL с запланированных $1,7 млрд. поднялись до $5,9 млрд. Строительство Pearl GTL обошлось Shell в $18-19 млрд. Осуществление в Катаре грандиозного проекта по строительству GTL-завода мощностью 154 тыс. баррелей в сутки синтетических углеводородов было отклонено фирмой-разработчиком Exxon Mobil. В проект планировалось инвестировать $7 млрд., чего явно оказалось бы недостаточно. Однако компания объяснила отказ от проекта «перераспределением ресурсов» в пользу строительства газоперерабатывающего предприятия Barzan, также расположенного в Катаре .

Другой весомой проблемой является влияние на экологию. Как показано в разделе 1, в процессе ФТ образуется диоксид углерода, который является парниковым газом. Как считается, выбросы СО 2 являются причиной глобальных климатических изменений, и количество выбрасываемого диоксида углерода ограничивается квотами на выбросы парниковых газов. В цепочке добыча-переработка-потребление для синтетических моторных топлив выбросы углекислого газа примерно вдвое превышают таковые для нефтяных топлив . Существуют различные технологии по утилизации углекислого газа (от хранения в подземных резервуарах до закачки в газо- или нефтеносный пласт), но они существенно удорожают и без того недешевые GTL-проекты. Однако стоит отметить, что другие вредные выбросы от непосредственно сгорания синтетических топлив в ДВС на 10ч50% ниже, чем для нефтяных топлив (таблица 11) .

Таблица 11 - Вредные выбросы при сгорании синтетического и традиционного ДТ

К экологической же проблеме можно отнести потребность в большом количестве воды для осуществления газификации угля, если последний используется в качестве исходного сырья. Зачастую климат в странах, богатых углем, но бедных нефтью, является засушливым. Однако на второй стадии GTL-производства - собственно синтез ФТ - вода является побочным продуктом, который после очистки можно использовать в технологическом процессе. Такая методика используется на заводе Pearl. Так как для получения синтез-газа на этом предприятии вода не нужна, она используется для выработки пара высокого давления при охлаждении реакторов ФТ. Получаемый водяной пар приводит компрессоры и электрогенераторы .

Рынок GTL является растущим рынком. Основными факторами, движущими этот рынок, являются настоятельная потребность в монетизации трудно утилизируемых другими способами (трубопроводным транспортом или сжижением) больших запасов природного, попутного нефтяного газа и газа угольных месторождений на фоне все возрастающей мировой потребности в жидких углеводородах и ужесточающихся требованиях к экологическим характеристикам углеводородного топлива. Освоение GTL-технологий является хорошей рыночной возможностью для тех стран и компаний, которые располагают большими запасами природного или попутного газа и угля. GTL-производства могут не конкурировать, а дополнять такие направления в отрасли, как LNG (Liquefied natural gas, сжиженный природный газ), производства экологически чистых топлив, высококачественных базовых масел.

Список использованных источников

1. Химические вещества из угля. Пер. с нем. /Под ред. И.В. Калечица - М.: Химия, 1980. - 616 с, ил.

2. Караханов Э.А. Синтез-газ как альтернатива нефти. II. Метанол и синтезы на его основе // Соросовский образовательный журнал. - 1997. - №12. - С. 68.

3. The Early Days of Coal Research [Электронный ресурс]. - Режим доступа: http://www.fe.doe.gov/aboutus/history/syntheticfuels_history.html

4. Процесс Фишера - Тропша [Электронный ресурс]. - Режим доступа: http://ru.wikipedia.org/wiki/Процесс_Фишера_-_Тропша

5. Обзор катализаторов синтеза Фишера-Тропша [Электронный ресурс]. - Режим доступа: http://www.newchemistry.ru/letter.php? n_id=7026&cat_id=5&page_id=1

6. Dry M.E. Applied Catalysis A: General. - 2004. - №276, - Р. 1.

7. 11. Сторч Г., Голамбик Н., Голамбик Р. Синтез углеводородов из окиси углерода и водорода. - М.: И.Л., 1954. - С. 257.

8. Lee W.H., Bartolomew C.H.J. Catal. - 1989. - №120. - Р. 256.

9. Wisam Al-Shalchi. Gas to liquids technology (GTL). - Baghdad - 2006.

10. Нефть [Электронный ресурс]. - Режим доступа: http://ru.wikipedia.org/wiki/Нефть

11. Matthew Dalton. Big Coal Tries to Recruit Military to Kindle a Market. // The Wall Street Journal. - 2007. - Sept. 11.

12. Explore Sasol - Sasol history [Электронный ресурс]. - Режим доступа: http://www.sasol.com/sasol_internet/frontend/navigation.jsp? navid=700006&rootid=2

13. The PetroSA GTL Refinery & LTFT Technology Development [Электронный ресурс]. - Режим доступа: http://www.petrosa.co.za/

14. Oryx GTL [Электронный ресурс]. - Режим доступа: http://www.oryxgtl.com/Englishv3/index.html

15. Shell MDS Technology and Process [Электронный ресурс]. - Режим доступа: http://www.shell.com.my/home/content/mys/products_services/solutions_for_businesses/smds/process_technology/

16. Inside Shell"s Bintulu GTL Plant [Электронный ресурс]. - Режим доступа: http://www.consumerenergyreport.com/2010/11/14/inside-shells-bintulu-gtl-plant/

17. First cargo of Pearl GTL products ship from Qatar [Электронный ресурс]. - Режим доступа: http://www.shell.com/home/content/media/news_and_media_releases/2011/first_cargo_pearl_13062011.html

18. Gas-to-liquids (GTL) processes [Электронный ресурс]. - Режим доступа: http://www.shell.com/home/content/innovation/meeting_demand/natural_gas/gtl/process/

19. Escravos Gas-to-Liquids Project, Niger Delta [Электронный ресурс]. - Режим доступа: http://www.hydrocarbons-technology.com/projects/escravos/

20. Обзор рынка GTL [Электронный ресурс]. - Режим доступа: http://www.newchemistry.ru/letter.php? n_id=5331

21. Узбекистан развивает сотрудничество с компаниями «Сасол» и «Петронас» [Электронный ресурс]. - Режим доступа: http://www.anons.uz/article/politics/5042/

22. Жемчужина GTL [Электронный ресурс]. - Режим доступа: http://www.rupec.ru/blogs/? ID=3048

23. Exxon Mobil, Qatar Unplug GTL Project [Электронный ресурс]. - Режим доступа: http://www.imakenews.com/lng/e_article000760746.cfm? x=b96T25P, bd1Rfpn

Размещено на Allbest.ru

Подобные документы

    Изучение жидкофазного окисления насыщенных углеводородов. Процесс распада промежуточных гидроперекисей на радикалы. Процесс окисления солями металлов переменной валентности. Механизм воздействия состава радикалов на скорость сложной цепной реакции.

    реферат , добавлен 13.03.2010

    Общее понятие о катализаторах. Современные тенденции в разработке и использовании новых катализаторов гидрирования. Разновидности дегидрирующего действия катализаторов. Процесс дегидрирования и природа активной поверхности катализаторов дегидрирования.

    курсовая работа , добавлен 21.10.2014

    Изучение основных функций, свойств и принципа действия катализаторов. Значение катализаторов в переработке нефти и газа. Основные этапы нефтепереработки, особенности применения катализаторов. Основы приготовления твердых катализаторов переработки нефти.

    реферат , добавлен 10.05.2010

    В органическом синтезе в реакциях гидрирования участвуют любые молекулы, имеющие ненасыщенные связи. Синтезы Фишера-Тропша. Обратная гидрированию реакция - процесс дегидрирования в промышленном органическом синтезе и в процессах нефтепереработки.

    реферат , добавлен 28.01.2009

    Исследование возможности применения синтез–газа в виде альтернативного нефти сырья, его роль в современной химической технологии. Получение метанола, суммарная реакция образования. Продукты синтеза Фишера–Тропша. Механизм гидроформилирования олефинов.

    реферат , добавлен 27.02.2014

    Восстановление СО на гетерогенных металлосодержащих катализаторах приводит к образованию различных продуктов – СН4. Синтезы углеводородов по Фишеру-Тропшу и метанола. Реакции образования углеводородов из СО и Н2 являются экзотермическими процессами.

    реферат , добавлен 28.01.2009

    История исследования реакций между аминокислотами и сахарами. Механизм образования меланоидинов, предложенный Дж. Ходжем. Факторы, влияющие на реакцию меланоидинообразования. Применение ингибирования для подавления реакции потемнения в пищевых продуктах.

    реферат , добавлен 19.03.2015

    Обоснование метода производства хлорной кислоты, факторы, влияющие на его выбор. Характеристика исходного сырья и готового продукта. Описание необходимого оборудования. Порядок и этапы проведения технологических расчетов, механизм составления баланса.

    курсовая работа , добавлен 05.02.2017

    Понятие биологических катализаторов, действие ферментов в живых системах и их классификация. Факторы, влияющие на активность биологических катализаторов. Вещества, называющиеся коферментами. Кинетика ферментативного катализа, уравнение Михаэлиса-Ментена.

    презентация , добавлен 03.04.2014

    Сущность алканов (насыщенных углеводородов), их основные источники и сферы применения. Строение молекул метана, этана, пропана и бутана. Особенности промышленных и лабораторных методов синтеза алканов. Механизм галогенирования, горения и пиролиза.

Лучшие статьи по теме