Бизнес. Отчетность. Документация. Право. Производство
  • Главная
  • Интернет-магазины
  • Принцип работы гту. Паровые и газовые турбины: назначение, принцип действия, конструкции, технические характеристики, особенности эксплуатации ГТУ и их отличия от паровых турбин и ДВС

Принцип работы гту. Паровые и газовые турбины: назначение, принцип действия, конструкции, технические характеристики, особенности эксплуатации ГТУ и их отличия от паровых турбин и ДВС

Турбина это любое вращающееся устройство, которое использует энергию движущегося рабочего тела (флюида), чтобы производить работу. Типичные флюиды турбин это: ветер, вода, пар и гелий. Ветряные мельницы и гидроэлектростанции использовали турбины десятилетия чтобы вращать электрогенераторы и производить энергию для промышленности и жилья. Простые турбины известны гораздо дольше, первые из них появились в древней Греции.

В истории энергогенерации, тем не менее, собственно газовые турбины появились не так давно. Первая, практически полезная газовая турбина начала генерировать электричество в Neuchatel, Швейцария в 1939 году. Она была разработана Brown Boveri Company. Первая газовая турбина, приводящая в действие самолёт также заработала в 1939 году в Германии, с использованием газовой турбины, разработанной Гансом П. фон Огайн. В Англии в 1930-е изобретение и конструирование газовой турбины Франком Виттлом привело к первому полёту с газотурбинным двигателем в 1941 году.

Рисунок 1. Схема авиационной турбины (а) и газовой турбины для наземного использования (б)

Термин "газовая турбина" легко вводит в заблуждение, поскольку для многих это означает турбинный двигатель, который использует газ в качестве топлива. На самом деле газовая турбина (показанная схематически на рис. 1) имеет компрессор, который подаёт и сжимает газ (как правило - воздух); камеру сгорания, где сжигание топлива нагревает сжатый газ и собственно турбину, которая извлекает энергию из потока горячих, сжатых газов. Этой энергии достаточно, чтобы питать компрессор и остаётся для полезных применений. Газовая турбина - это двигатель внутреннего сгорания (ДВС) использующий непрерывное сгорание топлива для производства полезной работы. Этим турбина отличается от карбюраторных или дизельных двигателей внутреннего сгорания, где процесс сжигания прерывистый.

Поскольку с 1939 года использование газовых турбин началось одновременно и в энергетике и в авиации - для авиационных и наземных газовых турбин используются различные названия. Авиационные газовые турбины называются турбореактивными или реактивными двигателями, а прочие газовые турбины называются газотурбинными двигателями. В английском языке имеется даже больше названий для этих, однотипных в общем, двигателей.

Использование газовых турбин

В авиационном турбореактивном двигателе энергия турбины приводит в действие компрессор, который засасывает воздух в двигатель. Горячий газ, покидающий турбину, выбрасывается в атмосферу через выхлопное сопло, что создаёт силу тяги. На рис. 1а изображена схема турбореактивного двигателя.


Рисунок 2. Схематичное изображение авиационного турбореактивного двигателя.

Типичный турбореактивный двигатель показан на рис. 2. Такие двигатели создают тягу от 45 кгс до 45000 кгс при собственном весе от 13 кг до 9000 кг. Самые маленькие двигатели приводят в движение крылатые ракеты, самые большие - огромные самолёты. Газовая турбина на рис. 2 - это турбовентиляторный двигатель с компрессором большого диаметра. Тяга создаётся и воздухом, который всасывается компрессором и воздухом, который проходит собственно через турбину. Двигатель имеет большие размеры и способен создавать большую тягу на маленькой скорости при взлёте, что и делает его наиболее подходящим для коммерческих самолётов. Турбореактивный двигатель не имеет вентилятора и создаёт тягу воздухом, который полностью проходит через газовый тракт. Турбореактивные двигатели имеют малые фронтальные размеры и производят наибольшую тягу на высоких скоростях, что делает их наиболее подходящими для использования на истребителях.

В газовых турбинах неавиационного применения часть энергии турбины используется для приведения в действие компрессора. Оставшаяся энергия - "полезная энергия" снимается с вала турбины на устройстве использования энергии, таком как электрический генератор или винт корабля.

Типичная газовая турбина для наземного использования показана на рис. 3. Такие установки могут генерировать энергию от 0,05 МВт до 240 МВт. Установка, показанная на рис. 3 это газовая турбина, производная от авиационной, но более лёгкая. Более тяжёлые установки созданы специально для наземного использования и называются промышленными турбинами. Хотя турбины, производные от авиационных, всё чаще используются как основные энергогенераторы, они по-прежнему наиболее часто используются как компрессоры для перекачки природного газа, приводят в действие корабли и используются как дополнительные генераторы электроэнергии на периоды пиковых нагрузок. Генераторы на газовых турбинах могут быстро включаться в работу, поставляя энергию в моменты наибольшей потребности в ней.


Рисунок 3. Наиболее простая, одностадийная, газовая турбина для наземного применения. Например, в энергетике. 1 – компрессор, 2 – камера сгорания, 3 – турбина.

Наиболее важные преимущества газовой турбины таковы:

  1. Она способна вырабатывать много энергии при относительно небольших размере и весе.
  2. Газовая турбина работает в режиме постоянного вращения, в отличие от поршневых двигателей, работающих с постоянно меняющимися нагрузками. Поэтому турбины служат долго и требуют относительно мало обслуживания.
  3. Хотя газовая турбина запускается при помощи вспомогательного оборудования, такого как электрические моторы или другая газовая турбина, запуск занимает минуты. Для сравнения, время запуск паровой турбины измеряется часами.
  4. В газовой турбине может использоваться разнообразное топливо. В больших наземных турбинах обычно используется природный газ, в то время, как в авиационных преимущественно лёгкие дистилляты (керосин). Дизельное топливо или специально обработанный мазут также может быть использован. Возможно также использование горючих газов от процесса пиролиза, газификации и переработки нефти, а также биогаз.
  5. Обычно газовые турбины используют атмосферный воздух в качестве рабочего тела. При генерации электричества газовой турбине не нужен охладитель (такой как вода).

В прошлом одним из главных недостатков газовых турбин была низкая эффективность по сравнению с прочими ДВС или паровыми турбинами электростанций. Тем не менее, за последние 50 лет совершенствование их конструкции увеличило тепловой КПД с 18% в 1939 году на газовой турбине Neuchatel до нынешнего КПД 40% при работе в простом цикле и около 55% в комбинированном цикле (об этом ниже). В будущем КПД газовых турбин повысится ещё больше, ожидается, что эффективность в простом цикле повысится до 45-47% и в комбинированном цикле до 60%. Эти ожидаемые величины КПД существенно выше, чем у других распространённых двигателей, таких как паровых турбин.

Циклы газовой турбины

Циклограмма показывает, что происходит, когда воздух входит, проходит по газовому тракту и выходит из газовой турбины. Обычно циклограмма показывает отношение между объёмом воздуха и давлением в системе. На рис. 4а показан цикл Брайтона, который показывает изменение свойств фиксированного объёма воздуха проходящего через газовую турбину во время её работы. Ключевые области этой циклограммы показаны также на схематичном изображении газовой турбины на рис. 4б.


Рисунок 4а. Диаграмма цикла Брайтона в координатах P-V для рабочего тела, показывающая потоки работы (W) и тепла (Q).


Рисунок 4б. Схематичное изображение газовой турбины, показывающее точки с диаграммы цикла Брайтона.

Воздух сжимается от точки 1 до точки 2. Давление газа при этом растёт, а объём газа уменьшается. Затем воздух нагревается при постоянном давлении от точки 2 до точки 3. Это тепло производится топливом, вводимым в камеру сгорания и его непрерывным горением.

Горячий сжатый воздух от точки 3 начинает расширяться между точками 3 и 4. Давление и температура в этом интервале падают, а объём газа увеличивается. В двигателе на рис. 4б это представлено потоком газа от точки 3 до через турбину до точки 4. При этом производится энергия, которая затем может быть использована. В рис. 1а поток направляется из точки 3" в точку 4 через выходное сопло и производит тягу. «Полезная работа» на рис. 4а показана кривой 3’-4. Это энергия, способная приводить в действие вал привода наземной турбины или создавать тягу авиационного двигателя. Цикл Брайтона завершается на рис. 4 процессом, в котором объём и температура воздуха уменьшаются, т.к. тепло выбрасывается в атмосферу.


Рисунок 5. Система с закрытым циклом.

Большинство газовых турбин работают в режиме открытого цикла. В открытом цикле воздух забирается из атмосферы (точка 1 на рис. 4а и 4б) и выбрасывается назад в атмосферу в точке 4, таким образом, горячий газ охлаждается в атмосфере, после выброса из двигателя. В газовой турбине работающей по закрытому циклу рабочее тело (жидкость или газ) постоянно используется для охлаждения отходящих газов (в точке 4) в теплообменнике (показанном схематично на рис. 5) и направляется на вход в компрессор. Поскольку используется закрытый объём с ограниченным количеством газа, турбина закрытого цикла – это не двигатель внутреннего сгорания. В системе с закрытым циклом горение не может поддерживаться и обычная камера сгорания заменяется вторичным теплообменником, который нагревает сжатый воздух перед тем, как он войдёт в турбину. Тепло обеспечивается внешним источником, например, ядерным реактором, угольной топкой с псевдоожиженным слоем или иным источником тепла. Предлагалось использовать газовые турбины закрытого цикла в полётах на Марс и других длительных космических полётах.

Газовая турбина, которая сконструирована и работает в соответствии с циклом Брайсона (рис. 4) называется газовой турбиной простого цикла. Большинство газовых турбин на самолётах работают по простому циклу, так как необходимо поддерживать вес и фронтальный размер двигателя как можно меньшими. Тем не менее, для наземного или морского использования становится возможным добавить дополнительное оборудование к турбине простого цикла, чтобы увеличить эффективность и/или мощность двигателя. Используются три типа модификаций: регенерация, промежуточное охлаждение и двойной нагрев.

Регенерация предусматривает установку теплообменника (рекуператора) на пути отходящих газов (точка 4 на рис. 4б). Сжатый воздух из точки 2 на рис. 4б предварительно нагревается на теплообменнике выхлопными газами перед входом в камеру сжигания (рис. 6а).

Если регенерация хорошо реализована, то есть эффективность теплооменника велика, а падение давления в нём мало, эффективность будет больше, чем при простом цикле работы турбины. Тем не менее, следует брать во внимание также стоимость регенератора. Регенераторы использовались в газотурбинных двигателях в танках Абрамс М1 - главном боевом танке операции "Буря в пустыне" и в экспериментальных газотурбинных двигателях автомобилей. Газовые турбины с регенерацией повышают эффективность на 5-6% и их эффективность ещё выше при работе под неполной нагрузкой.

Промежуточное охлаждение также подразумевает использование теплообменников. Промежуточный охладитель (интеркулер) охлаждает газ во время его сжатия. Например, если компрессор состоит из двух модулей, высокого и низкого давления, интеркулер должен быть установлен между ними, чтобы охлаждать поток газа и уменьшить количество работы, необходимой для сжатия в компрессоре высокого давления (рис. 6б). Охлаждающим агентом может быть атмосферный воздух (так называемые аппараты воздушного охлаждения) или вода (например, морская вода в судовой турбине). Несложно показать, что мощность газовой турбины с хорошо сконструированным интеркулером увеличивается.

Двойной нагрев используется в турбинах и это способ увеличить выходную мощность турбины без изменения работы компрессора или повышения рабочей температуры турбины. Если газовая турбина имеет два модуля, высокого и низкого давления, то используется перегреватель (обычно ещё одна камера сжигания), чтобы повторно нагреть поток газа между турбинами высокого и низкого давления (рис. 6в). Это может увеличить выходную мощность на 1-3%. Двойной нагрев в авиационных турбинах реализуется добавлением камеры дожигания у сопла турбины. Это увеличивает тягу, но существенно увеличивает потребление топлива.

Газотурбинная электростанция с комбинированным циклом часто обозначается аббревиатурой ПГЦ. Комбинированый цикл означает электростанцию в которой газовая турбина и паровая турбина используются вместе чтобы достичь большей эффективности, чем при их использовании по-отдельности. Газовая турбина приводит в действие электрогенератор. Выхлопные газы турбины используются для получения пара в теплообменнике, этот пар приводит в действие паровую турбину, которая также производит электричество. Если пар используется для отопления, установка называется когенерационной электростанцией. Прочем, в России обычно используется аббревиатура ТЭЦ (теплоэнергоцентраль). Но на ТЭЦ, как правило, работают не газовые турбины, а обычные паровые турбины. А использованный пар используется для нагрева, так что ТЭЦ и когенерационная электростанция - не синонимы. На рис. 7 упрощённая схема когенерационной электростанции, там показано два последовательно установленных тепловых двигателя. Верхний двигатель - это газовая турбина. Она передаёт энергию нижнему двигателю - паровой турбине. Паровая турбина затем передаёт тепло в конденсатор.


Рисунок 7. Схема электростанции комбинированного цикла.

Эффективность комбинированного цикла \(\nu_{cc} \) может быть представлена довольно простым выражением: \(\nu_{cc} = \nu_B + \nu_R - \nu_B \times \nu_R \) Другими словами - это сумма КПД каждой из ступеней минус их произведение. Это уравнение показывает, почему когенерация так эффективна. Предположим, \(\nu_B = 40% \), это разумная верхняя оценка эффективности для газовой турбины, работающей по циклу Брайтона. Разумная оценка эффективности паровой турбины, работающей по циклу Ранкина на второй ступени когенерациии - \(\nu_R = 30% \). Подставив эти значения в уравнение получим: \(\nu_{cc} = 0,40 + 0,30 - 0,40 \times 0,3 = 0,70 - 0,12 = 0,58 \). То есть КПД такой системы составит 58%.

Это верхняя оценка эффективности когенерационной электростанции. Практическая эффективность будет ниже из-за неизбежных потерей энергии между ступенями. Практически в системах когенерации энергии, введённых в эксплуатацию в последние годы, достигнута эффективность 52-58%.

Компоненты газовой турбины

Работу газовой турбины лучше всего разобрать, разделив её на три подсистемы: компрессор, камеру сгорания и турбину, как это сделано на рис. 1. Далее мы кратко рассмотрим каждую из этих подсистем.

Компрессоры и турбины

Компрессор соединен с турбиной общим валом, так что турбина может вращать компрессор. Газовая турбина с одним валом имеет единственный вал, соединяющий турбину и компрессор. Двухвальная газовая турбина (рис. 6б и 6в) имеют два конических вала. Более длинный соединён с компрессором низкого давления и турбиной низкого давления. Он вращается внутри более короткого полого вала, который соединяет компрессор высокого давления с турбиной высокого давления. Вал, соединяющий турбину и компрессор высокого давления вращается быстрее, чем вал турбины и компрессора низкого давления. Трёхвальная газовая турбина имеет третий вал, соединяющий турбину и компрессор среднего давления.

Газовые турбины могут быть центробежными или осевыми, либо комбинированного типа. Центробежный компрессор, в котором сжатый воздух выходит вокруг наружного периметра машины, надёжен, обычно стоит меньше, но ограничен степенью сжатия 6-7 к 1. Они широко применялись ранее и используются по сей день в небольших газовых турбинах.

В более эффективных и производительных осевых компрессорах сжатый воздух выходит вдоль оси механизма. Это наиболее распространённый тип газовых компрессоров (см. рис. 2 и 3). Центробежные компрессоры состоят из большого количества одинаковых секций. Каждая секция содержит вращающееся колесо с лопатками турбины и колесо с неподвижными лопатками (статорами). Секции расположены таким образом, что сжатый воздух последовательно проходит каждую секцию отдавая часть своей энергии на каждой из них.

Турбины имеют более простую конструкцию, по сравнению с компрессором, так как сжать поток газа труднее, чем вызывать его обратное расширение. Осевые турбины, подобные изображённым на рис. 2 и 3 имеют меньше секций, чем центробежный компрессор. Существуют небольшие газовые турбины, которые используют центробежные турбины (с радиальным вводом газа), но наиболее распространены осевые турбины.

Конструирование и производство турбины сложно, так как требуется увеличить срок жизни компонентов в горячем газовом потоке. Проблема с надёжностью конструкции наиболее критична в первой ступени турбины, где температуры наиболее велики. Используются специальные материалы и проработанная система охлаждения, чтобы лопатки турбины, которые плавятся при температуре 980-1040 градусов Цельсия в газовом потоке, температура которого достигает 1650 градусов Цельсия.

Камера сгорания

Удачная конструкция камеры сгорания должна удовлетворять многим требованиям и её правильное конструирование было непростым делом со времён турбин Виттла и фон Огайна. Относительная важность каждого из требований к камере сгорания зависит от области применения турбины и, разумеется, некоторые требования вступают в противоречие друг с другом. При конструировании камеры сгорания неизбежны компромиссы. Большинство требований к конструкции имеют отношение к цене, эффективности и экологической безопасности двигателя. Вот перечень базовых требований к камере сгорания:

  1. Высокая эффективность сгорания топлива при любых условиях работы.
  2. Низкий уровень выбросов недогара топлива и монооксида углерода (угарного газа), низкие выбросы оксидов азота при большой нагрузке и отсутствие видимых выбросов дыма (минимизация загрязнения окружающей среды).
  3. Малое падение давления при прохождении газа через камеру сгорания. 3-4% потери давления – это обычная величина падения давления.
  4. Горение должно быть устойчивым при всех режимах работы.
  5. Горение должно быть устойчивым при очень низких температурах и низком давлении на большой высоте (для авиационных двигателей).
  6. Горение должно быть ровным, без пульсаций или срывов.
  7. Температура должна быть стабильной.
  8. Большой срок службы (тысячи часов), особенно для промышленных турбин.
  9. Возможность использования разных видов топлива. Для наземных турбин типично использование природного газа или дизельного топлива. Для авиационных турбин керосина.
  10. Длина и диаметр камеры сгорания должны соответствовать размера двигательной сборки.
  11. Общая стоимость владения камерой сгорания должна быть минимальной (это включает исходную стоимость, стоимость эксплуатации и ремонта).
  12. Камера сгорания для авиационных двигателей должна иметь минимальный вес.

Камера сгорания состоит из минимум трёх основных частей: оболочки, жаровой трубы и системы впрыска топлива. Оболочка должна выдерживать рабочее давление и может быть частью конструкции газовой турбины. Оболочка закрывает относительно тонкостенную жаровую трубу в которой и происходит сгорания и систему впрыска топлива.

По сравнению с другими типами двигателей, такими как дизельные и поршневые автомобильные двигатели, газовые турбины производят наименьшее количество выбросов загрязняющих веществ в атмосферу на единицу мощности. Среди выбросов газовых турбин наибольшие опасения вызывают недогоревшее топливо, монооксид углерода (угарный газ), оксиды азота (NOx) и дым. Хотя вклад авиационных турбин в общие выбросы загрязняющих веществ составляет менее 1%, выбросы производимые непосредственно в тропосферу удвоились между 40 и 60 градусами северной широты, вызвав увеличение концентрации озона на 20%. В стратосфере, где летают сверхзвуковые самолёты, выбросы NOx вызывают разрушение озона. Оба эффекта вредят окружающей среде, так что уменьшение содержания оксидов азота (NOx) в выбросах авиационных двигателей – это то, что должно произойти в 21 столетии.

Это довольно короткая статья, которая старается охватить все аспекты применения турбин, от авиации до энергетики, да ещё и не полагается на формулы. Чтобы лучше ознакомиться с темой могу порекомендовать книгу «Газовая турбина на железнодорожном транспорте» http://tapemark.narod.ru/turbo/index.html . Если опустить главы, связанные со спецификой использования турбин на железной дороге – книга по-прежнему очень понятная, но гораздо более подробная.

Принцип действия газотурбинных установок

Рис.1. Схема ГТУ с одновальным ГТД простого цикла

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо - газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Газовые турбины описываются термодинамическим циклом Брайтона Цикл Брайтона/Джоуля - термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.

Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.

Иногда этот цикл называют также циклом Джоуля - в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.

Рис.2. P,V диаграмма цикла Брайтона

Идеальный цикл Брайтона состоит из процессов:

  • 1-2 Изоэнтропическое сжатие.
  • 2-3 Изобарический подвод теплоты.
  • 3-4 Изоэнтропическое расширение.
  • 4-1 Изобарический отвод теплоты.

С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1-2p-3-4p-1 на T-S диаграмме)(рис.3)

Рис.3. T-S диаграмма цикла Брайтона
Идеального (1-2-3-4-1)
Реального (1-2p-3-4p-1)

Термический КПД идеального цикла Брайтона принято выражать формулой:

  • где П = p2 / p1 - степень повышения давления в процессе изоэнтропийного сжатия (1-2);
  • k - показатель адиабаты (для воздуха равный 1,4)

Следует особо отметить, что этот общепринятый способ вычисления КПД цикла затемняет суть происходящего процесса. Предельный КПД термодинамического цикла вычисляется через отношение температур по формуле Карно:

  • где T1 - температура холодильника;
  • T2 - температура нагревателя.

Ровно это же отношение температур можно выразить через величину применяемых в цикле отношений давлений и показатель адиабаты:

Таким образом КПД цикла Брайтона, зависит от начальной и конечной температур цикла ровно так же, как и КПД цикла Карно. При бесконечно малой величине нагрева рабочего тела по линии (2-3) процесс можно считать изотермическим и полностью эквивалентным циклу Карно. Величина нагрева рабочего тела T3 при изобарическом процессе определяет величину работы отнесённую к количеству использованного в цикле рабочего тела, но ни каким образом не влияет на термический КПД цикла. Однако при практической реализации цикла нагрев обычно производится до возможно больших величин ограниченных жаростойкостью применяемых материалов с целью минимизировать размеры механизмов осуществляющих сжатие и расширение рабочего тела.

На практике, трение и турбулентность вызывают:

  • Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  • Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  • Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую.

Рекуператоры - это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал/компрессор/турбина/альтернативный ротор в сборе (см. изображение ниже), не учитывая топливную систему.

Рис.4. Эта машина имеет одноступенчатый радиальный компрессор,
турбину, рекуператор, и воздушные подшипники.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.

Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.



В автономной генерации - малой энергетике в последнее время значительное внимание уделяется газовым турбинам различной мощности. Электростанции на базе газовых турбин используются как основной или резервный источник электричества и тепловой энергии для объектов производственного или бытового назначения. Газовые турбины в составе электростанций предназначены для эксплуатации в любых климатических условиях России. Области применения газовых турбин практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, структуры ЖКХ.

Положительным фактором использования газовых турбин в сфере ЖКХ является то, что содержание вредных выбросов в выхлопных газах NO х и CO находится на уровне 25 и 150 ppm соответственно (у поршневых установок эти значения гораздо больше), что позволяет устанавливать электростанцию рядом с жилой застройкой. Использование газовых турбин в качестве силовых агрегатов электростанций позволяет избежать строительства высоких дымовых труб.

В зависимости от потребностей газовые турбины комплектуется паровыми или водогрейными котлами–утилизаторами, что позволяет получать от электростанции либо пар (низкого, среднего, высокого давления) для технологических нужд, либо горячую воду (ГВС) со стандартными температурными значениями. Можно получать пар и горячую воду одновременно. Мощность тепловой энергии, производимой электростанцией на базе газовых турбин, как правило, в два раза превышает электрическую.

На электростанции с газовыми турбинами в такой конфигурации коэффициент использования топлива возрастает до 90%. Высокая эффективность использования газовых турбин в качестве силовых агрегатов обеспечивается при длительной работе с максимальной электрической нагрузкой. При достаточно высокой мощности газовых турбин существует возможность совокупного использования паровых турбин. Эта мера позволяет существенно повысить эффективность использования электростанции, увеличивая электрический КПД до 53%.

Сколько стоит электростанция на базе газовых турбин? Какова её полная цена? Что входит в стоимость «под ключ»?

Автономная тепловая электростанция на базе газовых турбин имеет массу дополнительного дорогостоящего, но зачастую, просто необходимого оборудования (пример из жизни – реализованный проект). С использованием первоклассного оборудования стоимость электростанции подобного уровня, «под ключ», не превышает 45000 - 55000 рублей за 1 кВт установленной электрической мощности. Конечная цена электростанции на основе газовых турбин зависит от конкретных задач и нужд потребителя. В стоимость входят проектные, строительные и пусконаладочные работы. Сами газовые турбины, как силовые агрегаты, без дополнительного оборудования, в зависимости от компании-производителя и мощности, стоят от 400 до 800 долларов за 1 кВт.

Для получения информации о стоимости строительства электростанции или ТЭС в конкретном Вашем случае, необходимо отправить в нашу компанию заполненный опросный лист . После этого, по истечении 2–3 дней заказчик-клиент получает предварительное технико-коммерческое предложение - ТКП (краткий пример). На основании ТКП заказчиком принимается окончательное решение о строительстве электростанции на базе газовых турбин. Как правило, до принятия решения клиент посещает уже существующий объект, чтобы воочию увидеть современную электростанцию и «потрогать всё руками». Непосредственно на объекте заказчик получает ответы на имеющиеся вопросы.

За основу строительства электростанций на базе газовых турбин часто берется концепция блочно–модульного построения. Блочно-модульное исполнение обеспечивает высокий уровень заводской готовности газотурбинных электростанций и уменьшает сроки строительства объектов энергетики.

Газовые турбины – немного арифметики по себестоимости производимой энергии

Для производства 1 кВт электричества газовые турбины потребляют всего 0,29–0,37 м³/час газового топлива. При сжигании одного кубического метра газа, газовые турбины вырабатывают 3 кВт электричества и 4–6 кВт тепловой энергии. С ценой (усредненной) на природный газ в 2011 году 3 руб. за 1 м³, себестоимость 1 кВт электроэнергии полученной от газовой турбины, равна, приблизительно, 1 рублю. Дополнительно к этому потребитель получает 1,5–2 кВт бесплатной тепловой энергии!

При автономном энергоснабжении от электростанции на основе газовых турбин себестоимость производимой электроэнергии и тепла в 3–4 раза ниже действующих по стране тарифов, и это без учета высокой стоимости подключения к государственным электросетям (60 000 рублей за 1 кВт в Московской области, 2011 год).

Строительство автономных электростанций на основе газовых турбин позволяет получить значительную экономию денежных средств за счет исключения издержек на строительство и эксплуатацию дорогостоящих линий электропередач (ЛЭП), Электростанции на базе газовых турбин могут значительно повысить надежность электрического, теплового снабжения как отдельных предприятий или организаций, так и регионов в целом.
Степень автоматизации электростанции на основе газовых турбин позволяет отказаться от большого количества обслуживающего персонала. Во время эксплуатации газовой электростанции ее работу обеспечивают всего три человека: оператор, дежурный электрик, дежурный механик. При возникновении аварийных ситуаций для обеспечения безопасности персонала, сохранности систем и агрегатов газовой турбины предусмотрены надежные системы защиты.

Атмосферный воздух через воздухозаборник, оборудованный системой фильтров (на схеме не показаны) подается на вход многоступенчатого осевого компрессора. Компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания. В это же время в камеру сгорания турбины через форсунки подается и определенное количество газового топлива. Топливо и воздух перемешиваются и воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины. Часть полученной энергии расходуется на сжатие воздуха в компрессоре турбины. Остальная часть работы передаётся на электрический генератор через ось привода. Эта работа является полезной работой газовой турбины. Продукты сгорания, которые имеют температуру порядка 500-550 °С, выводятся через выхлопной тракт и диффузор турбины, и могут быть далее использованы, например, в теплоутилизаторе, для получения тепловой энергии.

Газовые турбины, как двигатели, имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива газовой турбины могут использоваться: керосин, дизельное топливо, газ .

Одними из преимуществ современных газовых турбин является длительный жизненный цикл - моторесурс (полный до 200 000 часов, до капитального ремонта 25000–60000 часов).

Современные газовые турбины отличаются высокой надежностью. Есть данные о непрерывной работе некоторых агрегатов в течение нескольких лет.

Многие поставщики газовых турбин производят капитальный ремонт оборудования на месте, производя замену отдельных узлов без транспортировки на завод-изготовитель, что существенно снижает временные затраты.

Возможность длительной работы в любом диапазоне мощностей от 0 до 100%, отсутствие водяного охлаждения, работа на двух видах топлива, - все это делает газовые турбины востребованными силовыми агрегатами для современных автономных электростанций.

Наиболее эффективно применение газовых турбин при средних мощностях электростанций, а на мощностях свыше 30 МВт - выбор очевиден.

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков - "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин - сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого - газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

§ 45. Турбинные установки

Судовые турбины служат для преобразования тепловой энергии пара или газа в механическую работу. Метод превращения энергии в турбине не зависит от рабочего тела, которое используется в турбине. Поэтому рабочие процессы, протекающие в паровых турбинах, не имеют существенного отличия от рабочих процессов, протекающих в газовых турбинах, а основные принципы проектирования паровых и газовых турбин одинаковы.

Свежий пар или газ, поступая в сопло, являющееся направляющим аппаратом, расширяется, потенциальная энергия превращается в кинетическую, и пар или газ приобретают значительную скорость. По выходе из сопла пар или газ попадает в каналы рабочих лопаток, насаженных на обод турбинного диска, сидящего на валу турбины. Рабочее тело давит на изогнутые поверхности рабочих лопаток, заставляя диск с валом вращаться. Совокупность рассматриваемых таких направляющих аппаратов (сопел) и рабочих лопаток на турбинном диске называется ступенью турбины . Турбины, имеющие лишь одну ступень, называются одноступенчатыми в отличие от многоступенчатых турбин.

Турбины по принципу работы рабочего тела (пара или газа) разделяют на две основные группы. Турбины, в которых расширение, пара или газа происходит только в неподвижных направляющих аппаратах, а на рабочих лопатках используется лишь их кинетическая энергия, называются активными . Турбины, в которых расширение пара или газа происходит также и при движении рабочего тела в каналах рабочих лопаток, называются реактивными. Турбины вращаются только в одну сторону и являются нереверсивными, т. е. они не могут изменять направление вращения. Поэтому на одном валу с главными турбинами переднего хода обычно предусматривают турбины заднего хода. Мощность судовых турбин заднего хода не превышает 40-50% мощности турбин переднего хода. Поскольку эти турбины не должны обеспечивать высокую экономичность в работе, число ступеней в них невелико.

Судовые паротурбинные установки, работающие при начальном давлении пара 40-50 атм и температуре пара 450-480° С, имеют экономический к. п. д. 24-27%.

Экономическим (эффективным) к. п. д. называется отношение тепла, превращенного в полезную работу, к теплу, развивающемуся при полном сгорании затраченного топлива. Эффективный к. п. д. характеризует экономичность двигателя. При повышении давления до 70-80 атм и температуры пара до 500- 550° С экономический к. п. д. возрастает до 29-31%. Дальнейшее повышение начального давления пара и совершенствование установок позволит увеличить к. п. д. судовой паротурбинной установки примерно до 35%.

Работа над судовыми газотурбинными установками (ГТУ) по существу носит еще экспериментальный характер, так как все еще не создано их серийной конструкции.

Газовая турбина отличается от паровой тем, что рабочим телом ее является не пар из котлов, а газы, образующиеся при сгорании топлива в специальных камерах.

Устройство и работа газовой турбины аналогичны устройству и работе паровой турбины. Они также бывают активные или реактивные, однокорпусные, многокорпусные и т. п. Отличаются газовые турбины от паровых более высокими температурными нагрузками: температура горячих газов бывает в пределах 700-800° С. Разница в температурном режиме уменьшает ресурсы времени работы газовых турбин.

В зависимости от способа сжатия воздуха и образования горячих газов различают газотурбинные установки с камерой горения и ГТУ со свободно-поршневыми генераторами газа (СПГГ). Отрицательным качеством ГТУ является большая потеря тепла при отводе отработавших газов.

Методом повышения экономичности ГТУ является использование тепла отработавших газов для подогрева воздуха, поступающего в камеру сгорания, так называемая регенерация.

Применение регенерации с одновременным двухступенчатым сжатием воздуха повышает эффективный к. п. д. установки до 28-30%. Такие ГТУ находят применение в качестве судовых силовых установок.

В судовой газотурбинной установке с камерой горения (рис.69) атмосферный воздух засасывается, сжимается компрессором низкого давления 1, располагаемым на одном валу с газовой турбиной 5, и направляется в холодильник 2, охлаждаемый забортной водой. Охлажденный воздух поступает в компрессор высокого давления 3, где снова сжимается до более высокого давления, после чего подается в регенератор 4, откуда подогретый отработавшими газами идет в камеру горения 6, где сгорает подающееся туда топливо. Продукты сгорания расширяются в газовой турбине 5 и через регенератор, отдав в нем часть тепла воздуху, выходят в атмосферу или используются в утилизационном котле.

Рис. 69. Схема газотурбинной установки с регенерацией и двухступенчатым сжатием воздуха.


Энергия, развиваемая в газовой турбине, не полностью используется по основному назначению, а частично расходуется на привод компрессоров. Для запуска газовой турбины ее необходимо раскрутить пусковыми электромоторами.

Газотурбинная установка со свободно-поршневым генератором газа (СПГГ) представляет собой активную или реактивную турбину и дизельный цилиндр, в котором происходит сжигание топлива. Комбинированная газотурбинная установка с СПГГ показана на рис. 70.

Цилиндр СПГГ 1 имеет два рабочих поршня 2 на одних штоках с поршнями компрессоров 3. При сгорании смеси воздуха с топливом, подаваемым через форсунку 11, газы в цилиндре расширяются, раздвигая поршни. В полостях 6 компрессорных цилиндров 5 создается разряжение и через клапаны 7 атмосферный воздух засасывается. Одновременно в полости 4 компрессорных цилиндров воздух сжимается и рабочие поршни возвращаются в исходное положение.

При расхождении поршней в цилиндре открываются сначала выхлопные окна 9, а затем продуваются окна 10. Отработанные газы через выхлопные окна поступают в ресивер 8 и оттуда - в газовую турбину 12.

При обратном ходе компрессорных поршней выхлопные и продувочные окна закрываются, воздух из полости 6 нагнетается в продувочный ресивер, а воздух в рабочем цилиндре сжимается. В конце сжатия температура воздуха поднимается и впрыснутое в этот момент форсункой топливо воспламеняется. Начинается новый цикл работы свободно-поршневого генератора газа.

Эффективный к. п. д. такой комбинированной газотурбинной установки с СПГГ приближается к 40%, что делает выгодной их установку на судах. Газотурбинные установки с СПГГ перспективны и будут широко использоваться на судах в качестве главных двигателей.


Рис. 70. Схема газотурбинной установки со свободно-поршневым генератором газа (СПГГ).


Судовые ядерные установки служат для получения тепловой энергии в результате деления ядер расщепляющихся элементов, которое происходит в аппаратах, называемых ядерными реакторами. Суда с такими установками имеют практически неограниченную дальность плавания.

Энергия, выделяемая реакцией деления ядер при использовании 1 кг урана, примерно равна энергии, получаемой при сжигании 1400 т мазута. Суточный расход ядерного топлива на транспортных судах исчисляется лишь десятками граммов. Срок смены тепловыделяющих элементов в судовых реакторах равен двумтрем годам. Несмотря на большой вес ядерной установки, вызванный большим весом биологической защиты, полезная грузоподъемность судов с ядерными установками, значительно больше грузоподъемности судов равных размерений, имеющих общепринятые силовые установки. Увеличение грузоподъемности на этих судах объясняется отсутствием на них обычного топлива.

Для повышения скорости движения судов применение установок, работающих на ядерной энергии, является экономически выгодным, позволяет повысить мощность силовых установок без резкого увеличения их веса. Решающим преимуществом судовых ядерных установок является отсутствие потребности в воздухе при их работе. Эта особенность позволяет решить проблему длительного движения судов под водой. Как известно, суда, плавая под водой, в однородной среде, встречают меньшее сопротивление, чем надводные суда, и, следовательно, при равных мощностях двигателей могут развивать большие скорости. Подводные транспорты большого водоизмещения могут быть значительно выгоднее в эксплуатации, чем надводные суда того же водоизмещения.

В качестве ядерного топлива для современных судовых реакторов применяется искусственно обогащенный уран с содержанием изотопа U 235 в количестве 3-5%.

Та часть реактора, в которой совершается цепная реакция, называется активной зоной. В эту зону вводят особое вещество - замедлитель нейтронов, замедляющее движение нейтронов до скорости теплового движения. В качестве замедлителя применяется простая вода (Н 2 0), тяжелая вода (D 2 0), бериллий или графит.

По типу активной зоны реакторы делят на гомогенные и гетерогенные. В гомогенных реакторах ядерное топливо и замедлитель представляют собой однородную смесь. В гетерогенных реакторах ядерное топливо располагается в замедлителе в виде стержней или пластин, называемых тепловыделяющими элементами. В судовых ядерных силовых установках применяется единственный тип - гетерогенные реакторы.

При совершении ядерной реакции около 80% энергии превращается в тепло, а 20% выделяется в виде излучений (а, в и у), а- и в-излучения особенной опасности не представляют. Но вот у-излучения и нейтронные излучения, обладающие большой проникающей способностью, вызывают вторичное излучение во многих материалах. При этом излучении в организме человека возникают тяжелые заболевания. Для предотвращения такого излучения ядерные силовые установки должны иметь надежную защиту, называемую биологической. Биологическую защиту обычно выполняют из металла, воды и бетона, она имеет значительные габариты и вес.

Наиболее мощной и технически совершенной судовой ядерной силовой установкой на гражданских судах является силовая установка на ледоколе «Ленин» - самом мощном ледоколе в мире.

Мощность четырех его турбин равна 44 000 л. с.

Главная энергетическая установка ледокола «Ленин» выполнена по следующей схеме (рис. 71). На ледоколе установлены три реактора 1 со стабилизаторами давления 2 в первом контуре. Замедлителем и теплоносителем служит обычная вода под давлением около 200 атм. Вода реактора подается в парогенераторы 3 при температуре около 325° С циркуляционными электронасосами 4. В парогенераторах получается пар второго контура под давлением 29 атм и с температурой 310° С, который приводит в действие четыре паровых турбогенератора 5. Отработавший пар проходит через конденсаторы 6 в виде конденсата и используется снова, совершая работу по замкнутому циклу.

Реакторы, парогенераторы и насосы активной зоны окружены биологической защитой из слоя воды и стальных плит толщиной 300-420 мм.



Судовые турбореактивные двигатели применяются на судах на подводных крыльях или на судах специального назначения. Часто встречающаяся схема турбореактивного двигателя приведена на рис. 72.


Рис. 71. Схема энергетической установки ледокола «Ленин»


При движении двигателя влево (по стрелке А) воздух поступает в его корпус и сжимается турбокомпрессором 1. Сжатый воздух подается в камеру горения 2, в которой сгорает поступающее одновременно топливо. Из камеры 2 продукты сгорания направляются в газовую турбину 3. В турбине газы частично расширяются, совершая этим работу для привода турбокомпрессора. Дальнейшее расширение газа происходит в сопле 4, откуда он с большой скоростью вырывается в атмосферу. Реакция вытекающей струи обеспечивает движение судна.

Парогазовая турбинная установка, работающая по циклу Вальтера, была применена на немецких подводных лодках во второй мировой войне с целью увеличения их скорости в подводном положении. Лодка с такой установкой могла в течение 5-6 ч развивать большие скорости подводного хода, доходящие до 22-25 узл.

Окислителем в этом цикле служила перекись водорода высокой (80%) концентраций, которая в присутствии катализатора разлагается в специальной камере на водяной пар и кислород, выделяя значительное количество тепла. В камере горения в кислороде сжигалось жидкое топливо с одновременным впрыскиванием туда же пресной воды. Энергия получающейся парогазовой смеси с высоким давлением и высокой температурой использовалась в парогазовой турбине. Отработавшая парогазовая смесь охлаждалась в конденсаторе, где водяной пар превращался в воду и поступал опять в систему, питательной воды, а углекислота откачивалась за борт.

Основными недостатками этих установок являлась малая дальность плавания лодок максимальными ходами, повышенная пожароопасность из-за наличия на лодке большого количества перекиси водорода, зависимость их нормальной работы от глубины погружения и высокая стоимость как самой установки, так и ее эксплуатации.

В Англии в послевоенные годы была построена подводная лодка «Эксилорер» с силовой установкой такого типа. На проведенных испытаниях было определено, что стоимость ее одного ходового часа эквивалентна стоимости 12,5 кг золота.

Вперед
Оглавление
Назад

Лучшие статьи по теме