Бизнес. Отчетность. Документация. Право. Производство
  • Главная
  • Питание
  • Заводы по производству синтетического каучука. Сенсация в химическом производстве

Заводы по производству синтетического каучука. Сенсация в химическом производстве

В разработке синтеза каучука Лебедев пошел по пути подражания природе. Поскольку натуральный каучук - полимер диенового углеводорода, то Лебедев воспользовался также диеновым углеводородом, только более простым и доступным - бутадиеном

Первое открытие натурального каучука

Каучук существует столько лет, сколько и сама природа. Окаменелые остатки каучуконосных деревьев, которые были найдены, имеют возраст около трех миллионов лет. Каучуковые шары из сырой резины найдены среди руин цивилизаций инков и майя, возраст этих шаров не менее 900 лет.

Родина каучука – Центральная и Южная Америка. По берегам реки Амазонки, во влажных жарких тропиках растет необычное дерево, которое называется бразильская гевея (Hevea brasiliensis). Если на коре дерева сделать надрез, то из ранки вытекает сок молочно-белого цвета, называемое латексом. На воздухе сок постепенно темнеет и затвердевает, превращаясь в резиноподобную смолу. Латекс содержит примерно 30% натурального полимера, крохотные частички которого находятся во взвешенном состоянии в воде, - эмульсия. Аналогичную эмульсию представляет собой молоко – в нем мельчайшие капельки жира взвешены в водном растворе. Сок дерева гевеи туземцы называли каучук (это название берет свое начало от двух индейских слов: cao – дерево и o-Chu – течь, плакать), что можно перевести как «слезы дерева». Уже в XV веке индейцы придумали, как можно использовать каучук в полезных целях. Они пропитывали млечным соком лодки, корзины, одежду, чтобы те не пропускали воду. Из каучука стали изготавливать факелы, которые долго и равномерно сгорали, распространяя приятный запах.

Если обмазывать каучуком глиняную бутылку, а затем, после затвердевания полимера, разбить и вынуть через горловое отверстие глиняные черепки, то получится легкая и небьющаяся емкость для различных жидкостей. Аналогичным способом туземцы научились изготавливать даже каучуковую обувь.

В тропических же странах Америки, в Мексике, например, сохранились раскопки, в которых были найдены резиновые мячи. Эти мячи служили для ритуальных целей. По всей вероятности, особое свойство каучуковых мячей отскакивать от твердых поверхностей послужило поводом считать этот материал чудесным.

На острове Гаити во время своего второго путешествия в 1493 году испанский адмирал Христофор Колумб увидел туземцев, игравших большим плотным мячом. Испанцы были удивлены веселой игрой индейцев. Они в такт песне подбрасывали черные шары. Хотя это казалось невероятным, но, ударяясь о землю, мячи довольно высоко подскакивали в воздух. Взяв эти шары в руки, испанцы нашли, что они довольно тяжелы, липки и пахнут дымом. Индейцы скатывали их из загустевшего млечного сока, вытекавшего из порезов на коре дерева гевеи. Колумб привез несколько кусков этого удивительного вещества на родину, но в те времена он никого не заинтересовал. Образцы каучука были привезены в Европу и хранились в музеях как редкость. Следующие два века каучук для Европы был просто любопытной заморской диковинкой.

Впервые в Европе

В 1731 году правительство Франции отправило математика и географа Шарля Кондамина в географическую экспедицию по Южной Америке. В 1736 он отправил обратно во Францию несколько образцов каучука вместе с описанием продукции, производимой из него людьми, населяющими Амазонскую низменность. После этого резко возрос научный интерес к изучению этого вещества и его свойств. В 1770 году британский химик Джозеф Пристли впервые нашел ему применение: он обнаружил, что каучук может стирать то, что написано графитовым карандашом. Тогда такие куски каучука называли гуммиэластиком («смолой эластичной»).

Во Франции к 1820 г. научились изготовлять подтяжки и подвязки из каучуковых нитей, сплетенных с тканью.

В Англии с введением газового освещения в городах на газовых заводах начало скапливаться довольно много жидких побочных продуктов сухой перегонки каменного угля. Эти продукты под названием сольвент-нафты могли растворять каучук, поэтому в 1823 г. один из фабрикантов по фамилии Макинтош, английский химик и изобретатель, член Лондонского королевского общества, закупил всю сольвент-нафту с газовых заводов города Глазго с целью использовать ее для изготовления непромокаемой одежды. Растворяя в ней каучук, он покрывал такими растворами ткани. По его имени непромокаемые пальто с того времени называются макинтошами.

Однако вскоре обнаружилось, при положительном качестве изготовленная таким образом одежда существенными недостатками: при холодной температуре ткань становится ломкой и жесткой, а при нагревании, наоборот, делалась липкой и неудобной. Кроме того, масла, жиры, нефть, скипидар и другие жидкости легко ее портили. Химики стали искать способ, как улучшить свойства натурального каучука.

В США вещи из каучука стали популярными в 1830-х годах, резиновые бутылки и обувь, сделанные южноамериканскими индейцами, импортировались в больших количествах. Другие резиновые изделия завозились из Англии, а в 1832 году в городе Роксбери штата Массачусетс Джон Хаскинс и Эдвард Шафе организовали первую «каучуковую» фабрику в США. Но производимые вещи, как и импортируемые, становились хрупкими зимой, и мягкими и липкими летом. В 1834 году немецкий химик Фридрих Людерсдорф и американский химик Натаниель Хейвард обнаружили, что добавление серы к каучуку уменьшает или даже вовсе устраняет липкость изделий из каучука.

В 1839 г. Ч.Гудьир, торговавший в Америке пластинами, уронил одну из них на горячую плиту.

Сперва он не заметил этого, но, когда увидел свою пластину лежащей на горячей плите, очень испугался, так как ему было известно, что при нагревании каучук становится липким, плавится и уже не возвращается в первоначальное состояние. Ч.Гудьир быстро схватил пластину с плиты и начал мять ее, чтобы убедиться, насколько она пострадала от нагревания. Удивлению его не было границ, когда он увидел, что пластина не размягчилась и не испортилась, а, наоборот, стала весьма эластичной и упругой и потеряла способность растворяться в обычных для себя растворителях. Он обнаружил кожеподобный материал - резину. Зная, что пластина содержала, помимо каучука, примесь серы и глета, Ч.Гудьир сообразил, чем вызвано изменение, произошедшее в каучуке, и насколько оно важно; впоследствии он взял патент на техническое использование этого явления. Такое превращение каучука мы называем вулканизацией.

Она заключается в том, что каучук смешивали с порошкообразной серой и другими примесями, доводили до тестообразного состояния и сформированную массу нагревали. После вулканизации каучук становился неизмеримо прочнее, избавляясь от тех недостатков сырого каучука, которые до сих пор препятствовали его применению. Этот процесс был назван вулканизацией. Открытие резины привело к широкому ее применению: к 1919 году было предложено уже более 40 000 различных изделий из резины.

История получения синтетического каучука Сергеем Васильевичем Лебедевым

Одно дерево бразильской гевеи в среднем, до недавнего времени, было способно давать лишь 2-3 кг каучука в год; годовая производительность одного гектара гевеи до Второй Мировой войны составляла 300-400 кг технического каучука. Такие объемы натурального каучука не удовлетворяли растущие потребности промышленности. Поэтому возникла необходимость получить синтетический каучук. Замена натурального каучука синтетическим дает огромную экономию труда.

В нашей стране не было природных источников для получения натурального каучука, а из других стран каучук к нам не завозился. Еще в 1931 году И.В.Сталин сказал: «У нас имеется в стране все, кроме каучука. Но через год-два и у нас будет свой каучук».

Современная, все развивающаяся и усложняющаяся техника требует каучуки хорошие и разные; каучуки, которые не растворялись бы в маслах и бензине, выдерживали высокую и низкую температуру, были бы стойки к действию окислителей и агрессивных различных сред.

В 1910 году С.В.Лебедеву впервые удалось получить синтетический каучук и бутадиен. Сырьем для получения синтетического каучука служил этиловый спирт, из которого получали 1,3-бутадиен (он оказался более доступным продуктом, чем изопрен). Затем через реакцию полимеризации в присутствии металлического натрия получали синтетический бутадиеновый каучук.

В 1926 году ВСНХ СССР объявил конкурс по разработке промышленного способа синтеза каучука из отечественного сырья. К 1 января 1928 года в жюри нужно было представить описание способа, схему промышленного получения продукта и 2 кг каучука. Победителем конкурса стала группа исследователей, которую возглавлял профессор Медико-хирургической академии в Ленинграде С.В.Лебедев.

Это было настоящей сенсацией, потому что способ С.В.Лебедева оказался более разработанным и экономичным. В 1932 году именно на базе 1,3-бутадиена возникла крупная промышленность синтетического каучука. Были построены два завода по производству синтетического каучука.

В 1908-1909 годах С.В.Лебедев впервые синтезировал каучукоподобное вещество при термической полиме-ризации дивинила и изучил его свойства. В 1914 году ученый приступил к изучению полимеризации около двух десятков углеводородов с системой двойных или тройных связей.

В 1925 году С.В.Лебедев выдвинул практическую задачу создания промышленного способа синтеза каучука. В 1927 году эта задача была решена. Под руководством Лебедева были получены в лаборатории первые килограммы синтетического каучука. С.В.Лебедев изучил свойства этого каучука и разработал рецепты получения из него важных для промышленности резиновых изделий, в первую очередь автомобильных шин. В 1930 году по методу Лебедева была получена первая партия нового каучука на опытном заводе в Ленинграде, а спустя два года в Ярославле пущен в строй первый в мире завод по производству синтетического каучука.

Способ получение синтетического каучука

В разработке синтеза каучука Лебедев пошел по пути подражания природе. Поскольку натуральный каучук - полимер диенового углеводорода, то Лебедев воспользовался также диеновым углеводородом, только более простым и доступным - бутадиеном

Сырьем для получения бутадиена служит этиловый спирт. Получение бутадиена основано на реакциях дегидрирования и дегидратации спирта. Эти реакции идут одновременно при пропускании паров спирта над смесью соответствующих катализаторов:

Бутадиен очищают от непрореагировавшего этилового спирта, многочисленных побочных продуктов и подвергают полимеризации.

Для того чтобы заставить молекулу мономера соединиться друг с другом, их необходимо предварительно возбудить, то есть привести их в такое состояние, когда они становятся способными, в

результате раскрытия двойных связей, к взаимному присоединению. Это требует затраты определенного количества энергии или участия катализатора.

При каталитической полиме-ризации катализатор не входит в состав образующегося полимера и не расходуется, а выделяется по окончанию реакции в своем первоначальном виде. В качестве катализатора полимеризации 1,3-бутадиена С.В.Лебедев выбрал металлический натрий, впервые примененный для полимеризации непредельных углеводородов русским химиком А.А.Кракау.

Отличительной особенностью процесса полимеризации является то, что при этом молекулы исходного вещества или веществ соединяются между собой с образованием полимера, не выделяя при этом каких-либо других веществ.

Важнейшие виды синтетического каучука

Вышерассмотренный бутади-еновый каучук (СКБ) бывает двух видов: стереорегулярный и нестерео-регулярный. Но синтетическому каучуку никак не удавалось достать качества натурального полимера.

Причину этого удалось разгадать только в конце 40-х годов XX века. Дело оказалось в том, что в синтетическом каучуке элементарные звенья с цис-транс-конфигурацией расположены хаотически.

Оказалось, что природный полимер имеет цис-расположение заместителей в двойной связи в более чем 97% элементарных звеньев. Впервые удалось получить бутадиеновый каучук стереорегулярного строения в 1957 году группе советских ученых. По износоустойчивости и эластичности этот полимер превосходил натуральный и получил название дивинилового каучука.

Итак, стереорегулярный бутади-еновый каучук применяют главным образом в производстве шин (которые превосходят шины из натурального каучука по износостойкости), нестерео-

регулярный бутадиеновый каучук - для производства, например, кислото- и щелочестойкой резины, эбонита.

В настоящее время химическая промышленность производит много различных видов синтетических каучуков, превосходящих по некоторым свойствам натуральный каучук. Кроме полибутадиенового каучука (СКБ), широко применяются сополимерные каучуки - продукты совместной полимеризации (сополимеризации) бутадиена с другими непредельными соединениями, например, со стиролом (СКС) или с акрилонитрилом (СКН):

В молекулах этих каучуков звенья бутадиена чередуются со звеньями соответственно стирола и акрилонитрила.

Бутадиен-стирольный каучук отличается повышенной износо-стойкостью и применяется в производстве автомобильных шин, конвейерных лент, резиновой обуви.

Бутадиен-нитрильные каучуки - бензо- и маслостойкие, и поэтому используются, например, в производстве сальников.

Винилпиридиновые каучуки - продукты сополимеризации диеновых углеводородов с винилпиридином, главным образом бутадиена с 2-метил-5-винилпиридином. Резины из них масло-, бензо- и морозостойки, хорошо слипаются с различными материалами. Применяются, в основном, в виде латекса для пропитки шинного корда.

В СССР разработано и внедрено в производство получение синтетического полиизопренового каучука (СКИ), близкого по свойствам к натуральному каучуку. Резины из СКИ отличаются высокой механической прочностью и эластичностью. СКИ служит заменителем натурального каучука в производстве шин, конвейерных лент, резин, обуви, медицинских и спортивных изделий.

Кремнийорганические каучуки применяются в производстве оболочек проводов и кабелей, трубок для переливания крови, протезов (например, искусственных клапанов сердца) и др. Жидкие кремнийорганические каучуки - герметики.

Полиуретановый каучук исполь-зуется как основа износостойкости резины.

Хлоропреновые каучуки - полимеры хлоропрена (2-хлор-1,3-бутадиена) - по свойствам сходны с натуральным каучуком, в резинах применяются для повышения атмосферо-, бензо- и маслостойкости. Существует и неорганический синтетический каучук - полифосфонитрилхлорид.

Использование каучука

Каучук имеет огромное народнохозяйственное значение. Чаще всего его используют не в чистом виде, а в виде резины. Резиновые изделия применяют в технике для изоляции проводов, изготовления различных шин, в военной промышленности, в производстве промышленных товаров: обуви, искусственной кожи, проре-зиненной одежды, медицинских изделий…

Резина - высокоэластичное, прочное соединение, но менее пластичное, чем каучук. Она представляет собой сложную много-компонентную систему, состоящую из полимерной основы (каучука) и различных добавок.

Наиболее крупными потреби-телями резиновых технических изделий являются автомобильная промыш-ленность и сельскохозяйственное машиностроение. Степень насыщенности резиновыми изделиями - один из основных признаков совершенства, надежности и комфортабельности массовых видов машиностроительной продукции.

В составе механизмов и агрегатов современных автомобиля и трактора имеются сотни наименований и до тысячи штук резиновых деталей, причем одновременно с увеличением производства машин возрастает их резиноемкость.

Виды резины и их применение

В зависимости от структуры резину делят на непористую (монолитную) и пористую.

Непористую резину изготовляют на основе бутадиенового каучука. Она отличается высоким сопротивлением истиранию. Срок износа подошвенной резины в 2-3 раза превышает срок износа подошвенной кожи. Предел прочности резины при растяжении меньше, чем натуральной кожи, но относительное удлинение при разрыве во много раз превышает удлинение натуральной подошвенной кожи. Резина не пропускает воду и практически в ней не набухает.

Резина уступает коже по морозостойкости и теплопроводности, что снижает теплозащитные свойства обуви. И наконец, резина является абсолютно воздухо- и паронепроницаемой. Непористая резина бывает подошвенная, кожеподобная и транспарентная.

Обычную непористую резину применяют для изготовления формованных подошв, накладок, каблуков, полукаблуков, набоек и других деталей низа обуви.

Пористые резины применяют в качестве подошв и платформ для весенне-осенней и зимней обуви.

Кожеподобная резина - это резина для низа обуви, изготовленная на основе каучука с высоким содержанием стирола (до 85%). Повышенное содержание стирола придает резинам твердость, вследствие чего возможно снижение их толщины до 2,5-4,0 мм при сохранении хороших защитных функций. Эксплуатационные свойства коже-подобной резины сходны со свойствами натуральной кожи. Она обладает высокой твердостью и пластичностью, что позволяет создавать след обуви любой формы.

Кожеподобная резина хорошо окрашивается при отделке обуви. Она имеет высокую износостойкость благодаря хорошему сопротивлению истиранию и устойчивости к многократным изгибам. Срок носки обуви с подошвой из кожеподобной резины составляет 179-252 дня при отсутствии выкрошивания в носовой части.

Недостатком этой резины являются невысокие гигиенические свойства: высокая теплопроводность и отсутствие гигроскопичности и воздухонепроницаемости.

Кожеподобную резину выпускают трех разновидностей: непористой структуры с плотностью 1,28 г/см3, пористой структуры, имеющую плотность 0,8-0,95 г/см3, и пористой структуры с волокнистым наполнителем, плотность которых не выше 1,15 г/см3. Пористые резины с волокнистыми наполнителями называются «кожволон». Эти резины по внешнему виду сходны с натуральной кожей. Благодаря волокнистому наполнителю повышаются их теплозащитные свойства, они отличаются легкостью, эластичностью, хорошим внешним видом. Кожеподобные резины применяют в качестве подошвы и каблука при изготовлении летней и весенне-осенней обуви клеевого метода крепления.

Транспарентная резина - это полупрозрачный материал с высоким содержанием натурального каучука. Отличается высоким сопротивлением истиранию и твердостью, по износостойкости превосходит все виды резин. Транспарентные резины выпускают в виде формованных подошв (вместе с каблуками), с глубоким рифлением на ходовой стороне. Разновидостью транспорентной резины является стиронип, содержащий большее количество каучука. Сопротивление многократному изгибу у стиронипа в три с лишним раза выше, чем у обычных непористых резин. Стиронип применяется при изготовлении обуви клеевого метода крепления.

Резина пористой структуры имеет замкнутые поры, объем которых в зависимости от вида резины колеблется от 20 до 80 % ее общего объема.

Эти резины имеют ряд преимуществ по сравнению с непористыми резинами: повышенные мягкость, гибкость, высокие амортизационные свойства, упругость.

Недостатком пористых резин является способность давать усадку, а также выкрошиваться в носочной части при ударах. Для повышения твердости пористых резин в их состав вводят полистирольные смолы.

Вывод

В настоящее время освоено производство новых видов пористых резин: порокрепа и вулканита. Порокреп отличается красивым цветом, эластичностью, повышенной прочностью. Вулканит - пористая резина с волокнистыми наполнителями, обладаю-щая высокой износостойкостью, хорошей теплозащитностью. Пористые резины применяют в качестве подошв для весенне-осенней и зимней обуви.

Получение искусственного каучука – одно из величайших достижений XX века.

Многие ученые не верили, что эта научно-техническая проблема может быть решена. Российские ученые завоевали своим открытием первенство в разработке способов получения синтетического каучука.

Сейчас синтетические каучуки являются одним из основных продуктов химической промышленности. Из них изготавливают около 50 тысяч различных изделий. Получение синтетического каучука дало толчок развитию органической химии.

В настоящее время производство искусственного каучука является одной из основных отраслей мировой промышленности.

Но производство синтетического каучука имеет не только положительную сторону. Проблема утилизации амортизированных автошин остается до настоящего времени достаточно острой для всех стран.

При сгорании шин образуются такие химические соединения, которые, попадая в атмосферный воздух, становятся источником повышенной опасности для человека: это бифенил,

антрацен, флуорентан, пирен, бенз(а)пирен. Два соединения из перечисленных - бифенил и бенз(а)пирен относятся к сильнейшим канцерогенам.

Выброшенные на свалки либо закопанные шины разлагаются в естественных условиях не менее 100 лет. Контакт шин с дождевыми осадками и грунтовыми водами сопровождается вымыванием ряда токсичных органических соединений: дифениламина, дибутилфталата, фенантрена и т.д. Все эти соединения попадают в почву. А резина, являющаяся высоко-молекулярным материалом, относится к термореактивным полимерам, которые в отличие от термопластичных не могут перерабатываться при высокой температуре, что создает серьезные проблемы при вторичном использовании резиновых отходов.

Имеющийся мировой и отечественный опыт свидетельствует, что наиболее распространенными методами утилизации автошин являются сжигание с получением энергии (наиболее популярно сжигание их в цементных печах), пиролиз в условиях относительно низких температур с получением легкого дистиллята, твердого топлива, близкого по свойствам к древесному углю, и металла, а также получение резиновой крошки и порошка, используемых для замены натурального и синтетического каучука при изготовлении полимерных смесей и строительных материалов. К сожалению, все перечисленные методы экономически и экологически не являются привлекательными, в связи с чем масштабного развития не получили.

В основу технологии положен метод деструкции полимерных материалов под воздействием умеренных температур в среде водорододонорных растворителей. В результате термо-ожижения получается густая подвижная масса, представляющая собой суспензию сажи в жидких углеводородах. Температура начала процесса составляет 240-250°С, но не более 280-290°С, давление - не выше 6,1 МПа. В реакторе под воздействием температуры и давления в присутствии водородо-донорного растворителя происходит растворение резины с разделением полученной массы в первичной стадии.

В условиях проведения процесса утилизации шин, разработанных нами, диоксины не образуются и не могут образоваться в силу очень мягких условий проведения реакции и специальных мер безопасности. Проведенные исследования показали возможность безопасного использования вторичного материала после утилизации автомобильных шин в производстве

автомобильных шин

лакокрасочных материалов

герметиков

мастербачей

мастик и дорожных материалов

технического углерода (сажа)

Проблема переработки поли-мерных отходов является в настоящее время одной из основных проблем промышленной экологии. Вариантов переработки этого сырья много. Однако интересным представляется вариант переработки в текстильные материалы по следующим причинам. Важнейшей задачей промышленной экологии является решение проблем с твердыми отходами (особенно, бытовыми), что позволит не только уменьшить нагрузку на биосферу, но и получить дополнительный источник продукции (при рециклизации и переработке отходов) или энергии.

Снижение угрозы загрязнения окружающей среды может быть достигнуто, в том числе, и за счет максимального использования в производственном процессе отходов таким образом, чтобы эти отходы были способны снова включиться в циркуляцию вещества в природе.

Эта общеэкологическая точка зрения, высказанная еще В.И.Вернадским, должна стать основным подходом при решении проблем использования отходов вместо их ликвидации (сжигание, захоронение). Естественно, такой подход должен быть положен и в основу решения проблемы твердых отходов.

Зотова Наталья Владимировна

Русская Цивилизация

Промышленность полимерных материалов (полимеров)

Это главная отрасль нефтехимии (производство синтетических смол, пластмасс, химических волокон, синтетического каучука), где начальные стадии технологического процесса привязаны к источникам сырья, а последующая переработка ориентируется на потребителя и потому может осуществляться в других регионах.

Изменения в технологии и сырьевой базе химии полимеров (переход от ранее использовавшихся отходов переработки древесного и сельскохозяйственного сырья на нефть и газ), развитие трубопроводного транспорта привели к существенным сдвигам в географии отрасли.

Вырабатывается углеводородное нефтегазовое сырье на нефтеперерабатывающих и газобензиновых заводах, основная часть которых сконцентрирована в европейской части страны. Они размещаются в районах добычи нефти и газа (Поволжье, Урал, Северный Кавказ, Западная Сибирь) или ориентируются на потребителя, располагаясь на трассах и в конечных пунктах магистральных нефте- и газопроводов (Ярославль, Рязань, Москва, Нижний Новгород, Омск, Тобольск и др.).

В химии полимеров выделяют несколько направлений.

Производство синтетических смол и пластических масс наиболее крупное направление химической промышленности, которое исторически сложилось в Центральном (Москва, Владимир), Приволжском (Казань, Дзержинск, Уфа), Уральском (Нижний Тагил, Салават, Екатеринбург), Сибирском (Тюмень, Кемерово, Новосибирск), Северо- Западном (Санкт-Петербург), Южном (Волгоградская, Ростовская области и Краснодарский край), Северо-Кавказском (Ставропольский край) федеральных округах.

Крупнейший российский производитель синтетических смол и пластмасс – ОАО "Уралхимпласт", основные производственные мощности которого находятся в Нижнем Тагиле (Свердловская область). Холдинг занимает ключевые позиции на рынках многих видов товаров химической продукции.

Отдельные технологически зависимые предприятия отрасли обычно являются монопольными поставщиками и потребителями полуфабрикатов и связаны продуктопро- водами, например "Саянскхимпласт" и Ангарский завод полимеров (этилен), "Казаньоргсинтез" и "Нижнекамск нефтехим" (этилен), "Каустик" (Стерлитамак) и "Салаватнефтеоргсинтез" (этилен).

Промышленность химических волокон и нитей, которые бывают искусственными и синтетическими, требует большого количества сырья, материалов, топлива и воды. Искусственные волокна из природных полимеров служат для производства ацетата и вискозы. Предприятия по их выпуску расположены в Балаково, Рязани, Твери, Санкт-Петербурге, Красноярске, восстанавливается завод в г. Шуя (Ивановская область).

Комбинаты по изготовлению синтетических волокон (капрон, лавсан) работают в Курске, Саратове, Волжском. Совместное производство искусственных и синтетических волокон находится в городах Клин, Серпухов, Энгельс, Барнаул. Основное количество химических волокон (более 2/3) вырабатывается в европейской части страны, ориентируясь на размещение текстильной промышленности.

Производство синтетического каучука

Каучук как сырье используется для изготовления шин (65–70%) и резинотехнических изделий (около 25%).

Предприятия по производству синтетического каучука первоначально возникли на основе использования этилового спирта из пищевого сырья – картофеля, зерна (города Ярославль, Ефремов, Воронеж, Казань), затем гидролизного спирта (Красноярск). Начиная с 1960-х гг. они перешли на углеводородное сырье, получаемое при переработке нефти, попутных нефтяных газов и природного газа. Основные регионы производства синтетического каучука – Поволжье (Тольятти, Нижнекамск, Казань), Урал (Стерлитамак), юг Сибири (Омск, Красноярск). Суммарная мощность заводов синтетического каучука в стране оценивается более чем в 2 млн т, а его производство в 2011 г. составило 1,4 млн т.

Ведущей компанией на рынке синтетических каучуков является "СИБУР", на долю которой приходится свыше 2/5 их производства в России. Компания объединяет крупнейших производителей синтетического каучука – ООО "Воронежсинтезкаучук", ООО "Тольяттикаучук" и ОАО "Красноярский завод синтетического каучука".

Производство синтетического каучука приближено к центрам шинного и резинотехнического производства. Существуют целые комплексы взаимосвязанных производств: нефтепереработка – синтетический каучук – шинное производство (Омск, Ярославль); гидролиз древесины – этиловый спирт – синтетический каучук – производство шин (Красноярск).

Наибольшее развитие химический комплекс получил в четырех федеральных округах: Приволжском (доля округа в общем объеме производства химического комплекса РФ составляет 44%), Центральном (24%), Сибирском (11%) и Южном (10%).

В химической индустрии получили широкое развитие процессы территориальной концентрации и комбинирования производства. Крупнейшие химические узлы сформировались в ряде регионов страны: в республиках Татарстан и Башкортостан, Алтайском, Пермском и Красноярском краях, Тульской, Тюменской, Ярославской, Нижегородской, Волгоградской, Самарской, Кемеровской и Иркутской областях, что, с одной стороны, в значительной степени способствовало социально-экономическому развитию этих регионов, но с другой – существенно обострило в них экологическую обстановку и качество жизни населения. Ведь химический комплекс является крупным загрязнителем окружающей среды: по сбросу загрязненных сточных вод он занимает 2-е место (по общему объему выбросов вредных веществ в атмосферу – 10-е место) среди отраслей промышленности.

За последние полвека химическая промышленность прошла непростой путь: от бурного развития в 1950–1980-х гг., когда в отрасли был создан значительный производственный потенциал, до упадка в конце 1980-х гг., когда темпы капитального строительства резко снизились, а в 1990-е гг. инвестиции в отрасль практически прекратились.

Сегодня позиции России на мировом рынке химических товаров существенно различаются для разных товарных групп. Так, по производству минеральных удобрений отечественная химическая промышленность – один из мировых лидеров: ей принадлежит 3-е место. По объему производства синтетических каучуков Россия занимает 4-е место в мире (10% мирового производства), но по производству полипропиленов только 13-е место (1–2%), а нефтехимической продукции – 19-е место (1%). Выпуск многих прогрессивных видов химической продукции, даже необходимых для самой российской экономики, незначителен или вовсе отсутствует.

В то же время производство продукции относительно глубокой переработки в целом стагнировало, что привело к захвату российского рынка иностранными производителями, в результате чего с начала 2000-х гг. Россия превратилась в нетто-импортера химической продукции.

Будущее химической промышленности России тесным образом связано с перспективами развития мирового рынка химической продукции. По оценке экспертов, к 2030 г. он может превысить 4 трлн долл., что обусловлено ростом населения планеты. С учетом сложившихся тенденций среднегодовой рост оборота химической продукции прогнозируется до 2030 г. для Китая на уровне 13%, Индии – 11, России – 5, Европейского союза (ЕС) – 4, США – 3%. В это время основным направлением развития химии будет создание качественно новых высокотехнологичных материалов. Решение этой задачи и структурная модернизация отраслей химического комплекса связаны с деятельным участием государства в реализации приоритетов, провозглашенных им в Концепции социально-экономического развития России до 2020 года.

В настоящее время основными факторами, сдерживающими развитие отрасли, являются: недостаточная инвестиционная активность; ограничение доступа российской химической продукции на рынки отдельных зарубежных стран; высокая доля импортозависимости от поставок химической продукции; несоответствие имеющейся транспортной инфраструктуры экспортному потенциалу отрасли; рост цен (тарифов) на продукцию (услуги) субъектов естественных монополий, который будет сдерживать темпы роста производства азотных удобрений, аммиака, пластмасс и повлечет рост цен на них; недостаточные темпы внедрения инновационных технологий с использованием химической продукции в смежных областях (строительство, ЖКХ, автомобилестроение и др.).

Главная цель Стратегии развития химической и нефтехимической промышленности России до 2015 года, утвержденной приказом Минпромэнерго России от 14 марта 2008 г. № 119, и проекта "План развития газо- и нефтехимии России на период до 2030 года" (Плане-2030), разрабатываемого Минэнерго России, – повышение конкурентоспособности и объемов выпуска разнообразной химической продукции российскими предприятиями, прежде всего – на основе создания и внедрения ресурсосберегающих технологий.

Развитие мощностей отечественной нефтегазохимии в Плане-2030 предполагается осуществлять в рамках шести кластеров: Волжского, Западно-Сибирского, Каспийского,

Восточно-Сибирского, Дальневосточного и Северо-Западного. Они создаются вблизи источников сырья и рынков сбыта. Функционирование кластеров предполагает активное взаимодействие предприятий всей нефтехимической производственной цепочки, включая производителей конечной продукции, органов местного управления, научных институтов, вузов.

В 2015 г. доля химической промышленности в ВВП должна увеличиться с 1,7 до 3%. При этом объемы производства должны вырасти в три-четыре раза, а доля продуктов высокого передела возрасти с 30 до 70% при соответствующем сокращении доли сырья. Всего в нефтехимическую и химическую отрасли в рамках стратегии планируется вложить около 4 трлн руб., включая расходы на НИОКР. Однако в стратегии больше внимания следует уделять и мерам, направленным на экологизацию химического производства, внедрение инновационных технологий и ресурсосбережению.

В стратегии определены основные направления структурной перестройки отрасли на основе государственной поддержки: стимулирование инновационной и инвестиционной активности; осуществление таможенно-тарифной политики с целью защиты отечественного товаропроизводителя на внутреннем и внешнем рынках; проведение инвестиционных преобразований для более эффективного управления химическим комплексом РФ; совершенствование российского законодательства с целью создания благоприятных условий для развития химического сектора экономики.

Ярославский ордена Трудового Красного Знамени завод синтетического каучука ВПО по производству СК «Союзкаучук»(Акционерное общество« СК Премьер») стал детищем 1-й пятилетки.

Целью строительства завода была замена закупаемого за границей натурального каучука синтетическим. В 1926 году ленинградский профессор С. В. Лебедев выиграл всесоюзный конкурс на разработку методов получения синтетического каучука, предложив изготавливать его из пищевого спирта, а тот из картофеля. Поскольку крупнейшим в стране производителем картофеля считалась Ярославская губерния, завод решили строить в Ярославле. Каучук был нужен для производства автопокрышек, поэтому завод стали строить рядом с другим объектом Первой пятилетки — Резино-асбестовым комбинатом(ЯРАК). Строительство началось летом 1931 года, а уже 7 июля 1932 г. был получен первый в мире искусственный каучук.

Руководителем строительства и первым директором завода был Лука Трофимович Стреж . Он внёс огромный вклад в решение задачи по успешному запуску производства искусственного каучука. Во всесоюзной прессе его приводили в пример как современного, грамотного руководителя. Он обеспечил высокие темпы строительства и пуск завода в исключительно короткие сроки(11,5 мес.). Под его руководством произошло становление предприятия: освоение производства, овладение сложным технологическим процессом получения синтетического каучука, отработка технологических режимов. В 1935 г. за успешное освоение синтетического каучука Стреж премирован наркомом тяжелой промышленности С. Орджоникидзе легковой автомашиной. В годы работы Стрежа решались задачи расширения производства — увеличения мощности цехов, ввода в строй дополнительного оборудования; велась исследовательская и экспериментальная работа по совершенствованию технологии производства и созданию новых каучуков, улучшению их качества.

В 1936 году Стреж был назначен директором Ярославского резино-асбестового комбината, объединявшего тогда несколько производств, позднее разделившихся на самостоятельные предприятия. В начале 1937 года в стране была развернута кампания по выявлению троцкистов, «вредителей» и «диверсантов». В прессе началась подготовка общественного мнения к предстоящим массовым репрессиям. Весной 1937 года в газетах была напечатана целая серия статей с обвинениями в адрес руководителей промышленности, в том числе — Стрежа. И уже в июне после II областной партконференции, на которой присутствовал представитель ЦК ВКП(б) Лазарь Каганович, в Ярославской области начались массовые аресты руководителей, специалистов и рядовых сотрудников многих предприятий. На заводе СК-1 были арестованы и расстреляны директор В. А. Дундяков, главный инженер К. И. Душин, главный механик В. И. Груздев, зам. главного механика А. С. Талиманчук, начальник цеха обработки А. Б. Лапп, начальник смены Н. В. Алексеев, работники завода и его подразделений В. И. Ершов, И. А. Ильин, И. К. Горячев, А. Е. Бойков, А. Ф. Крыжановский, В. И. Маненков, А. К. Бородачёв, Н. И. Соколов. Десятки людей были отправлены в лагеря.

В 1936—1940 гг. производственные мощности завода значительно выросли за счет продолжения капитального строительства, а также благодаря освоению технологии производства и процесса полимеризации дивинала. Большую роль в подъеме производства сыграло стахановское движение. Завод выполнил 2-й пятилетний план за 3 года 8 месяцев.

В предвоенные годы на заводе впервые в СССР было осуществлено промышленное производство латекса. За разработку этого метода начальнику ЦНИЛ завода Б. А. Долгоплоску (будущему академику и Герою Социалистического труда) была присуждена Сталинская премия(1941).

В 1940 г. Ярославский завод СК-1 возглавил Петр Сергеевич Назаров . В годы Великой Отечественной войны он обеспечил ускоренное выполнение заданий по выпуску продукции для фронта. Провел большую организаторскую работу по восстановлению предприятия после демонтажа и налетов немецкой авиации. Под руководством Назарова на заводе разрабатывались и осваивались новые виды продукции, велась научно- исследовательская и производственная работа по замене дефицитного пищевого сырья синтетическим. Были введены в строй установки по выработке технического альдегида и технического эфира — побочных продуктов производства. На имеющемся оборудовании осуществлялось производство регенерата из отходов резины, был освоен процесс получения морозостойкого латексного каучука. Два цеха были переведены на выпуск низкощелочных каучуков, имеющих улучшенные физико-химические свойства. Установленное дополнительное оборудование позволило освоить технологический процесс высоковязкого каучука.

В годы войны предприятию неоднократно присуждались первые места во Всесоюзном соцсоревновании. По решению правительства на заводе оставлено на вечное хранение переходящее Красное знамя Государственного Комитета обороны.

В послевоенное время значительные успехи были достигнуты в области органического синтеза, конструировании аппаратов, машин, механизмов, на основе которых развивается и совершенствуется производство синтетического каучука. 1947 году пущен цех бутадиен-нитрильных каучуков для маслобензостойких изделий. Этот цех под номером 9 стал первым, где каучук производился из непищевого сырья, что в условиях послевоенного времени приобретало не только техническое, но и социальное значение.

В конце 1940-х гг. лабораторией Б. А. Долгоплоска в Ленинградском ВНИИСК разработан и на Ярославском заводе СК, в опытном цехе, выпущен по новому методу массовый каучук СКД. Он по многим свойствам превосходил натуральный. Освоение в широких масштабах выпуска каучука СКД было столь важно для народного хозяйства страны, что все наиболее активные участники разработки и освоения процесса стали лауреатами Сталинской премии(1949). В числе лауреатов был и научный руководитель центральной заводской лаборатории Ярославского завода С К Павел Виноградов. Большая группа работников предприятия награждена орденами и медалями.

В 1952—1958 гг. директором Ярославского завода СК-1 работал Михаил Михайлович Бондаренко . За годы его деятельности была проведена большая работа по техническому перевооружению завода, наращиванию производственных мощностей, широко внедрялась автоматизация и механизация трудоемких процессов. Решались задачи улучшения качества и увеличения выпуска каучуков и латексов универсального назначения. По методу, разработанному в лаборатории завода, было организовано производство бутадиен-пипериленового латекса ДБП — положено начало промышленному выпуску синтетических латексов.

В 1958 г. директором предприятия был назначен Пантелеймон Михайлович Работнов , который трудился на заводе с 1931 года и прошёл все ступеньки карьерной лестницы. Он возглавил завод в период широкомасштабной реконструкции и строительства производства. Под его руководством впервые в СССР был введен в строй комплекс цехов по производству бутадиен-стирольных латексов. Как руководитель Работнов внес большой вклад в дальнейшее совершенствование и налаживание выпуска новых видов продукции. Предприятие являлось соисполнителем ряда научно-исследовательских работ по созданию и освоению производства новых видов каучуков и латексов для целлюлозно-бумажной промышленности, изготовления автомобильных покрышек и камер для автомобиля« Жигули», ударопрочных пластиков. Завод из года в год досрочно выполнял государственные задания. За высокие производственные показатели Совет Министров СССР неоднократно награждал коллектив предприятия переходящими Красными знамёнами.

В 1971 г. Ярославский завод СК возглавил Борис Иванович Германов . За период работы директором добился высокой эффективности работы производства. Под его руководством было продолжено техническое перевооружение предприятия, начатое в 60-е годы. Введён в эксплуатацию комплекс цехов по производству новых видов каучуков и латексов с использованием принципиально новой технологии. Специалистами завода был разработан процесс получения одного из так называемых« жидких» каучуков — каучука СКДП-Н и с 1976 года организовано его производство в промышленном масштабе. Новый материал заменил пищевые растительные масла в производстве олифы, а затем нашел применение в различных строительных композициях. Этапным моментом в истории завода можно считать пуск крупнотоннажного производства изопренового каучука СКИ-3 — полноценного заменителя натуральных каучуков. В кратчайший срок было освоено высокоавтоматизированное производство прекрасного сырья для шинной и других отраслей промышленности. С пуском комплекса СКИ-3 объем производства продукции на заводе вырос на две трети при незначительном росте численности персонала.

Была внедрена комплексная система управления качеством продукции. Основным видам продукции предприятия присвоен Государственный Знак качества. Возглавляемое Германовым производство вышло на уровень передовых в отрасли. За высокое качество продукции и высокие объемы производства завод СК был награжден орденом Трудового Красного Знамени.

Однако после развала СССР и разрушения плановой экономики именно производство СКИ-3 оказалось самым слабым звеном на заводе. Когда строился СКИ-3, не возникало вопроса о том, где взять сырье для нового производства. В качестве поставщиков изопрена за Ярославским заводом СК были закреплены Новокуйбышевский нефтехимкомбинат и Чайковский завод СК. Однако в 1993 году установки по производству изопрена на этих предприятиях были остановлены, и комплекс СКИ-3 в Ярославле оказался без сырья. Только в ноябре 1995 года после двухлетнего простоя был найден новый поставщик и комплекс СКИ-3 снова был пущен. Но вскоре производство снова лишилось сырья и остановилось.

К 1996 году в стране достигла апогея эпидемия неплатежей и бартерных сделок. Новое руководство решило сделать упор на выпуск ширпотреба — всевозможных клеев, шпаклевок. Ранее это было подсобное производство, невеликое по объему, но зато давало живые деньги. Однако последствием этого шага стало то, что конкуренты вытеснили ярославский завод с рынка каучуков и латексов. Производство основной продукции на заводе прекратилось. Образовались громадные долги: поставщикам, энергетикам и другим партнёрам — около 80 млн. рублей, в бюджеты всех уровней — около 100 млн.(в ценах 2001 г.).

В начале 2002 года на завод пришёл новый инвестор: ОАО« Группа Альянс». На заводе выросла заработная плата, были погашены задолженности, реструктурированы долги в бюджет. У инвестора были большие планы по возрождению предприятия. Но этим планам не суждено было исполниться.

В 2004 году производственная деятельность предприятия была прекращена. «СК-Премьер» остановился в августе, с сентября работники перестали получать заработную плату. За октябрь, ноябрь, декабрь и январь администрация начала выплачивать по 10 процентов от начисляемой заработной платы. Рабочие не раз выходили на митинги, требуя сохранить завод. Ничего не помогло. 28 февраля 2005 года на заводе было проведено массовое сокращение, в результате которого работу потеряли около 400 человек из 600 работавших. Задолженность по зарплате и выходное пособие сокращённым работникам было выплачено только в конце апреля после вмешательства областного прокурора Михаила Зелепукина. 1 июня 2005 г. решением Ярославского арбитражного суда на заводе на 18 месяцев было введено внешнее управление. Но выход из ситуации так и не был найден.

Решением Арбитражного суда Ярославской области от 03 июля 2007 г. ОАО« СК Премьер» было признано несостоятельным(банкротом). Оборудование и отдельные объекты недвижимости были проданы, чтобы погасить долги. Большая часть корпусов находится в руинированном состоянии.

Директорами завода СК-1 работали:

1931 — 1936 гг. — СТРЕЖ Лука Трофимович (1901 — 1937).

1936 — 1937 гг. — ДУНДЯКОВ Василий Алексеевич(1902 — 1937).

1940 — 1946 гг. — НАЗАРОВ Пётр Сергеевич (1903 — 1989).

1952 — 1958 гг. — БОНДАРЕНКО Михаил Михайлович (1906 — ?). (1963), в 1932 — 1946 гг. был начальником сначала цеховой, а затем заводской научно-исследовательской лаборатории. Его научные исследования в этот период отмечены Сталинской премией(1941), орденами Красного Знамени(1939) и Ленина(1945). В 1946 году переехал в Ленинград.

Бурное развитие мировой автомобильной промышленности, авиации, военной техники привело к тому, что каучука добываемого в природе и предназначенного для производства резины, стало катастрофически не хватать. Плантации, разбросанные по всему миру стали не в состоянии обеспечить потребности промышленности. И тогда, во многом благодаря российским ученым на рынок вышел синтетический каучук.

Введение

На самом деле, к промышленному производству синтетического сырья ученые и производственники шли порядка ста лет. Каучук был синтезирован во второй половине XIX века. Но технология производства, необходимое оборудование разработали только в ХХ веке. Все необходимое для производства синтетического каучука было представлено С.В. Лебедевым, российским ученым.

С тех пор, ученые – химики, производственники приложили немало сил для совершенствования этого сырья, разработки новых марок этого сырья и пр.

Виды синтетических каучуков

За время с момента организации промышленного производства синтетического каучука прошло почти сто лет. И специалисты в области органической химии за это время разработали и внедрили в производство большое количество видов этого сырья. Ниже приведен небольшой список.

Каучук бутадиеновый – основная область его применения это производство шин и камер. Параметры этой продукции выполненной из бутадиенового сырья существенно выше чем изделий этого класса но изготовленных из природного (натурального) качества. Кроме автомобильной промышленности бутадиеновый каучук применяют для производства химически стойкой резины и эбонита.

Бутилкаучук обладает уникальной способностью по удержанию воздуха. Именно это обеспечило его преимущества перед другими материалами при изготовлении покрышек, камер, диафрагм и пр. На основании многократных испытаний, проводимых на заводах по производству покрышек и можно утверждать, что камеры, изготовленные из этого сорта синтетического каучука, удерживают давление воздуха в 8 – 10 раз больше, чем аналогичные изделия, выполненные из природного каучука. Бутилкаучук отличается от природного еще и тем, что стойко воспринимает воздействие озона, не реагирует на действие к маслам разного типа (животному, растительному), но вместе с тем, этот материал необходимо оградить от контактов с минеральными маслами.

Если сравнивать параметры прочности, то натуральный продукт выигрывает с существенным отрывом. Между тем, этот материал обладает низкой скоростью вулканизации, плохая адгезия к металлическим поверхностям. Быстрое нагревание при знакопеременных деформациях и в довершение, низкая эластичность при нормальной температуре и влажности.

Полихлоропреновый каучук или хлоропреновый, как иногда его называют, поставляется потребителю в виде светло-желтой массы. К основным свойствам этого материала можно отнести:

  • стойкость к воздействию огня;
  • адгезия к тканям, металлу и многим другим материалам;
  • невосприимчивость к действию озона, атмосферных явлений, в частности, к низким температурам.

Хлоропреновый каучук под воздействием растяжения кристаллизуется. Это его свойство, позволяет резинам, произведенным на его основе показывать высокие прочностные характеристики.

Предприятия химической промышленности выпускают множество типов синтетических каучуков, причем некоторые из них превосходят натуральные. Широкое применение получили так называемые сополимерные соединения, получение при совместной реакции бутадиена и с ненасыщенными соединениями, например, такими как стирольный каучук СКС.

Ведя речь о сырье искусственного происхождения нельзя забывать и таком веществе как латекс синтетический. Это, по сути, раствор искусственного каучука и других полимерных веществ, например, полистирола.

Латексы синтетические применяют для изготовления клеев, водоэмульсионных красок. Их применяют и в строительстве при создании полимербетона.

Формула строения

Каждый вид синтетического каучука имеет свою химическую формулу

Молекулы изопрена CH2=C(CH3)-CH=CH2 2-метилбутадиен-1,3;

бутадиеновый CH2=CH-CH=CH2 бутадиен-1,3;

дивиниловый CH2=CH-CH=CH2 бутадиен-1,3

Хлоропреновый CH2=C(Cl)-CH=CH2 2-хлорбутадиен-1,3

Бутадиен-стирольный состоит из молекул CH2=CH-CH=CH2 бутадиен-1,3 и C6H5- CH=CH2 стирол

Свойства и применение

Свойства синтетического каучука во многом превышают основные параметры натурального продукта. Так, его плотность меньше плотности воды и поэтому он спокойно плавает.

Химические свойства синтетического каучука позволяют ему не растворяться в воде, именно это позволяет его использовать для изготовления покрытий не проницаемых для воды. Это свойство позволяет их использовать для шитья одежды, спортивного инвентаря и пр. Такие вещества как бензин, бензол растворяют каучуки. Это свойство позволяет их применять для производства клеевых составов. Каучук – это диэлектрик, которые широко применяют для создания изоляторов силового и слаботочного оборудования. Каучуки обладают гибкостью, прочностью, и повышенной стойкость к истиранию. Кроме этого каучуки сохраняют свои свойства при циклических деформациях.

Синтетические каучуки подразделяют на общие и специальные. К общим относят:

  • изопреновые;
  • бутадиен-стирольные и пр.

Их основные свойства – морозостойкость, высокая износостойкость. Кроме этого они обладают высокой масло бензо- и озоностойкостью.

Бутадиеновые каучуки(ПБ), иногда их называют дивиниловыми, относят к материалам общего назначения. Их применяют для изготовления проекторных и обкладочных резин для шин (каркаса, боковины и пр.). Этот материал применяют для производства материалов, применяемых в кабельной промышленности, инструмента для абразивной обработки металла и других материалов, антифрикционных изделий.

Сырье на основании этилен — пропилена используют для создания ударопрочных полимеров, шин для велосипедов, тканей с водоотталкивающими свойствами, конвейерных лент для работы в термически сложных условиях.

Фторокремнийорганические каучуки (фторсиликоны или фторкаучки). Особенностью этих материалов – это сочетание стойкости к действию температуры, как низкой, так и высокой и различным агрессивным средам. Кроме того, сырье этого класса отличается стойкостью к истиранию, воздействию открытого пламени. Он не пропускает газы. Его диэлектрические свойства позволяют его применять для создания изоляции, как для силовых кабелей, так и слаботочной аппаратуры. Это сырье применяют для производства материалов, применяемых для гумирования емкостей, предназначенных для транспортировки агрессивных веществ.

Еще одно важное свойство этих материалов – стойкость к радиации.

Отличия искусственного материала от природного заключаются в том, что при получении синтетического сырья применяют множество сополимеров и химических элементов, которые добавляют новые характеристики этому материалу.

Устойчивый спрос на синтетический каучук привел к появлению целой отрасли, которая задействована на производстве этого сырья. На рынке этого сырья отмечается постоянный рост спроса на эту продукцию. Лидером по потреблению синтетического сырья можно считать самую динамично, развивающуюся экономику мира – китайскую. Динамика рынка показывает, что после кризисных явлений 2008 – 2009 года, и падения спроса на эту продукцию в пределах 4%, на сегодня прирост сбыта составляет до 7%, от прошлогоднего уровня.

Среди стран, которые лидируют по производству синтетического сырья надо назвать КНР, РФ, США и ряд других.

Несмотря на хорошую конъюнктуру, наши производители каучука все менее заметны на мировом рынке. Чтобы сохранить позиции, им надо срочно модернизировать производство. Денег для этого у них более чем достаточно, однако инвестиционный процесс упирается в дефицит сырья, вызванный сырьевой дуополией и нежеланием развиваться.

Российская промышленность синтетического каучука, наверное, является одной из наиболее конкурентоспособных и успешных частей нашей нефтехимии. Несмотря на то, что производители работают на советских активах, испытывают определенные трудности с сырьем, объемы отгружаемого на экспорт каучука год от года не сокращаются. Более того, ряд предприятий не так давно перешли на выпуск принципиально новой продукции, для которой открыты любые рынки. В других секторах химпрома, например в том же производстве полимеров, ситуация куда менее благоприятная - российские производители с трудом борются с импортом внутри страны и с большим запозданием пытаются реализовать крупные инвестпроекты. Тем не менее, индустрия синтезкаучука стагнирует. На фоне сокращения внутреннего спроса со стороны шинников производители не могут резко увеличить экспорт продукции. Рост цен на каучуки, которые с начала года подорожали примерно на четверть, с лихвой компенсирует производителям недополученную прибыль и позволяет на время забыть о техническом состоянии отрасли, повышении цен на сырье и усиливающихся конкурентах.

Сырьевая дуополия

Синтетический каучук в СССР, пожалуй, был главным продуктом для всей химической промышленности. Дело тут не в стратегических приоритетах (изначально советский каучук шел на оборонные нужды), а в том, что это чуть ли не единственный инновационный продукт нефтехимии, производство которого Страна Советов сумела наладить самостоятельно.

Хотя к концу 1980−х СССР был мировым лидером по производству каучуков, проверку рыночной экономикой отрасль проходила с трудом. Правда, обвального спада производства с последующим массовым закрытием предприятий, как это произошло, например, в индустрии химволокна, удалось избежать. Главная заслуга в этом принадлежит колоссальному технологическому потенциалу, созданному в советское время, часть которого оказалась бесполезной, а часть - более чем востребованной. Если предприятия могли получить доступ к дешевому газовому сырью, то спокойно продавали продукцию за рубеж. Однако именно проблема сырья, как это ни странно, сейчас значится в повестке дня отрасли и сдерживает ее развитие.

Если посмотреть на карту сырьевых потоков российской индустрии синтезкаучука, становится видно, что большая их часть так или иначе исходит от одного предприятия - нефтехимического комбината в Тобольске. Этот гигантский завод перерабатывает в год до трех миллионов тонн ШФЛУ (широкая фракция легких углеводородов - основное сырье нефтехимии, получается на газоперерабатывающих заводах из попутного нефтяного газа). В частности, он является крупнейшим в стране производителем бутадиена и изобутилена - главного сырья для производства каучуков. Тобольский НХК был первым и самым важным из приобретенных «собирателем» «Сибура» Яковом Голдовским активов. Всем, кто хоть немного знаком с отраслью, очевиден факт, что тот, кто контролирует Тобольский НХК, контролирует не только львиную долю индустрии синтезкаучука, но и значимую часть всей российской нефтехимии.

Сейчас под контролем «Сибура» находится производство порядка 60% всего синтетического каучука в России, если отнести к нему также зависящий от холдинга завод в Стерлитамаке. Основным конкурентом на этом рынке для теперь уже бывшей «дочки» «Газпрома» является «Нижнекамскнефтехим». На эти две компании приходится 100% всего выпуска каучуковых мономеров в стране. Производителей каучуковых полимеров, помимо указанных предприятий, существует еще четыре. Однако из-за сырьевого диктата российская индустрия синтезкаучука плавно движется к дуополии (см. график 1). В чем же выражается сырьевой диктат? Нижнекамское предприятие стремится максимально перерабатывать сырье на своих мощностях, что подтверждает его инвестиционная программа, поэтому на рынок оно поставляет все меньше и меньше бутадиена. «Сибур» же, торгующий товарным бутадиеном, ведет себя как заправский монополист, не стремясь к его переработке, но и не допуская его «переизбытка» на рынке.

Некоторое количество каучукового сырья можно получить с нефтехимических комбинатов и с НПЗ, где оно образуется в виде побочного продукта. Так, в частности, работает Омский завод синтезкаучука. Однако как объемы производства, так и качество этого сырья, которое требует предварительной доработки перед использованием, совершенно не подходят для того, чтобы заместить газовое сырье, на котором привыкли работать российские предприятия. Еще один вариант обойти сырьевую дуополию «Сибура» и «Нижнекамскнефтехима» - производить бутадиен самостоятельно из бутана. Традиционно бутан и бутадиен получают на больших и дорогих установках центрального газофракционирования на крупных нефтехимических комбинатах вроде Тобольского. Но эти установки производят и другие ключевые продукты нефтехимии. Существуют гораздо менее громоздкие и менее дорогие установки дегидрирования бутана. Производителей бутана в России немало (в частности, ими являются некоторые НПЗ). Чтобы избежать дуополии «Сибура»-«Нижнекамскнефтехима», не зависимые от них каучуковые заводы могли бы инвестировать в подобные установки. Правда, есть проблема. Когда рыночная конъюнктура спокойна, цены на бутан и бутадиен почти не отличаются, поэтому окупить такие установки почти нереально. Однако в последние годы цены на бутадиен значительно выше, чем на бутан (см. график 2), и технологии его производства из бутана становятся эффективными даже в Европе.

Есть такой опыт и в России. Не так давно на базе «Нижнекамскнефтехима» было создано совместное предприятие, реанимировавшее мощности комбината по дегидрированию бутана. В частности, именно оттуда получает бутадиен Ефремовский завод синтезкаучука. Впрочем, гендиректор завода Владимир Беликов скептически относится к идее дальнейшего развития этой технологии: «Для синтеза бутадиена из бутана в России нет ресурсов доступного бутана, в сырьевом обеспечении мы вынуждены полагаться на фракцию ББФ (бутан-бутадиеновая фракция), которую покупаем у нескольких нефтехимических комплексов». Следует заметить, что на этой фракции работает большинство мировых производителей синтетических каучуков, поскольку она образуется как побочный продукт при пиролизе, т. е. при производстве этилена и пропилена. Более того, по всему миру на таком сырье работает множество каучуковых заводов с неприлично малой по российским меркам мощностью 40–60 тыс. тонн, встроенных в комбинаты оргсинтеза и производящих наиболее массовые виды каучуков.

Тем не менее, при общем прогрессе российского органического синтеза (которого пока не наблюдается) ресурсы сырья для выпуска бутадиена могут значительно возрасти. С установки на 500 тыс. тонн этилена можно получать сырье для выпуска 60 тыс. тонн бутадиена, и большинство новых комбинатов оргсинтеза, например, в Иране такими установками оснащаются. При наличии инвестиций и желания даже с имеющейся сырьевой базой в России выпуск этилена легко может быть увеличен вдвое, до 4 млн тонн. Нетрудно посчитать, что при полном использовании всех продуктов пиролиза это увеличило бы предложение бутадиена почти на четверть миллиона тонн, то есть в полтора раза в сравнении с тем, сколько его производится в России сейчас.

Логистика, экспорт и инвестиции

Второй источник головной боли производителей каучуков - логистика. С экономико-географической точки зрения чем дальше от источника сырья (то есть, как мы выяснили выше, от Тобольска) находится завод, тем хуже, потому что каучук как твердое вещество гораздо транспортабельнее газового сырья, из которого он производится. Учитывая гигантские транспортные плечи, становится понятно, почему в структуре себестоимости каучука доля затрат на транспорт сырья превышает 15%. С другой стороны, построенные в 1930−х предприятия не виноваты, что спустя десятилетия оказались в столь невыгодном транспортном положении, потому что были переведены с картофеля на газ.

Поскольку большинство наших заводов находится в глубине европейской части страны, в том числе в Центральной России, проблемой для них является не только транспортировка сырья, но и вывоз самих каучуков за пределы страны. По словам Владимира Беликова, «каучук в Юго-Восточной Азии значительно дороже, чем в Европе, но довезти его туда непросто. Единственный вариант - экспорт через балтийские порты». Для предприятий Урало-Поволжья, где выпускается две трети российского каучука, проблема экспортной логистики стоит еще острее. Во многом именно из-за логистического барьера российские экспортеры ориентируются в основном на европейский, а не на более интересный азиатский рынок.

Основной вопрос, впрочем, не в том, по какому маршруту, а в том, имеет ли вообще смысл везти наш каучук за рубеж. Статистика дает уверенный ответ: имеет (см. график 3), более половины российского каучука экспортируется. Однако присутствие наших компаний на мировом рынке сокращается (см. график 4), причем в наибольшей степени это относится к самым массовым стирольным каучукам. Парадокс объясняется просто: развиваться дальше на советских активах российские производители уже не могут, а их обновление идет достаточно медленно (см. график 5). Лишь 40% бутадиеновых каучуков в России выпускаются на современных неодимовых или литиевых катализаторах, тогда как на Западе это давно является нормой. И хотя, по словам российских производителей, многие западные шинники сохранили в своих рецептурах старые типы каучуков, которые и покупают в России, очевидно, что будущее явно не за ними. Именно поэтому в последние годы наши производители каучуков спохватились и начали массово переводить мощности на новые катализаторы.

Примерно так же обстоят дела и с выпуском бутилкаучуков. Хотя мировой рынок этой продукции близок к олигополии (на нем доминируют американская ExxonMobil и германская Lanxess) и обеспечивает высокую маржу, инвестиции необходимы и здесь. Сейчас в мире три четверти всех произведенных бутилкаучуков - это галобутилкаучуки. Последние выгодно отличаются от традиционных каучуков, например, более быстрой вулканизацией (производство шины занимает меньше времени) и износостойкостью. В России, однако, около двух третей выпуска приходится на традиционные немодифицированные бутилкаучуки. И это при том, что наряду с бутадиеновыми бутилкаучуки сейчас основной объект инвестирования в каучуковую отрасль; их доля в общем выпуске растет, а стирольных, в которые почти ничего не вкладывается, - падает (см. график 6).

Что касается ценовой конкурентоспособности, то тут российским производителям в очередной раз сделала подарок мировая конъюнктура. При этом в самой России наиболее ходовые марки каучуков стоят либо столько же, сколько в Европе, либо не намного дешевле. В то же время, по оценкам представителя одного из российских производителей каучуков, себестоимость их выпуска в стране сейчас лишь на 10–20% ниже, чем в Европе. Впрочем, если европейские производители, по данным консалтинговой компании CMAI, работают с рентабельностью около 20%, у их российских конкурентов с учетом затрат на логистику этот показатель должен составлять не меньше 30%. Однако маржа наших поставщиков все в большей степени съедается за счет удорожания сырья. «За последние несколько лет на нашем заводе доля бутадиена в себестоимости каучука выросла с 40 до 60 процентов», - говорит Владимир Беликов. По его словам, сейчас бутадиен, предлагаемый к реализации на рыночных условиях, в России стоит дороже, чем в Европе.

Засучить рукава и работать

Что же делать российским производителям каучуков в такой ситуации? Главная проблема, на наш взгляд, в том, что большинство из них и не пытаются ответить на этот вопрос, не уделяя стратегическому планированию должного внимания и уповая лишь на дары конъюнктуры. Единственное исключение из данного правила - это, пожалуй, лишь «Нижнекамскнефтехим», обновивший за последние годы половину мощностей, вложивший средства в удешевление производства изопрена и вынашивающий амбициозные планы по дальнейшей модернизации каучукового бизнеса.

Может быть, у российской каучуковой индустрии банально нет денег на инвестиционное развитие? Однако при рентабельности в 30% (оцененной, заметим, только для экспортных поставок, где по производителям бьет логистика) и выручке в 3,5–4 млрд долларов общий объем прибыли в отрасли составляет около 1 млрд долларов ежегодно. Для строительства современного завода галобутилкаучуков мощностью 100 тыс. тонн «с нуля» нужно 600 млн долларов, для создания выпуска бутадиеновых каучуков на современных катализаторах мощностью 50 тыс. тонн - около 50 млн. Словом, годовой прибыли каучуковой отрасли вполне хватило бы на то, чтобы привести себя в относительно приемлемое состояние.

Но это только полдела. Чтобы вернуть позиции на мировом рынке, российским производителям уже недостаточно обновления оборудования - необходимо работать с конечными потребителями. Именно тесное сотрудничество с потребителями позволяет западным производителям каучуков относительно хорошо себя чувствовать, даже не имея такой сырьевой форы, какой располагает Россия. Это естественно, поскольку мировой рынок шин, а значит, и мировой рынок каучука определяется всего несколькими грандами. Другое дело, что им не очень выгодно предлагать нашим поставщикам такие же условия сотрудничества, какие они предлагают западным контрагентам. Например, они пытаются фиксировать в долгосрочных контрактах не формулу цены, а сами цены, что в условиях удорожания сырья делает такие поставки малоприбыльными. Дело тут не только в том, что наша индустрия выпускает, образно выражаясь, ширпотреб, а западные заводы предлагают более продвинутую продукцию. У шинников есть рычаги, на которые можно давить: они могут ссылаться на несоответствие российской продукции, выпускаемой на советском оборудовании, собственным стандартам, предлагать услуги по сертификации и продвижению на рынок в обмен на выгодные для себя контракты и т. д. и т. п.

Интересно, что у наших производителей каучуков большой опыт заключения долгосрочных контрактов по поставкам за рубеж, где, как мы отметили выше, есть серьезные логистические проблемы и ценовое давление западных шинных компаний. В то же время опыт заключения таких контрактов на внутреннем рынке почти отсутствует, хотя на российских заводах западных компаний производится уже примерно четверть всех легковых шин в стране. Западные шинные компании кровно заинтересованы в покупке местного сырья для местного производства, и проиграть здесь конкурентную борьбу нашим производителям каучука никак нельзя. Сейчас отсутствие таких контрактов имеет вескую причину. Ни Nokian, ни Michelin еще не имеют на российских заводах производства резиновых смесей, для которых, собственно, и нужен каучук. По имеющейся информации, завод Nokian во Всеволожске получает смесь из Финляндии, завод Michelin в Давыдово - из Польши. Но через несколько лет ситуация изменится (Nokian уже сейчас строит цех резиносмешения), и тогда потребление каучука в России снова начнет расти. Вопросы модернизации производства и улучшения переговорных позиций в дискуссии с шинными грандами станут к этому моменту делом чести и выживания для российских заводов синтезкаучуков.

Влас Рязанов, корреспондент журнала

Лучшие статьи по теме